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Error estimates for numerical integration of the N-body problem
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Estimates are established for the radius of convergence and the remainder term in the Taylor solution of the

N-body problem in rectangular coordinates.
PACS numbers: 05.20. — y, 95.10.Ce, 95.10.Eg, 02.60.Jh

1, One way to solve the differential equations of the
N-body problem in rectangular coordinates is to approxi-
mate the solution by a Taylor-series segment in some
neighborhood of the starting time, provided the coordi-
nates and velocities of the bodies are specified at that
time,

The principal result of this letter will be the following:

Theorem. Letmy,..., my denote the masses of
mass-points My,..., MN moving under their mutual at-
traction according to Newton's law, and let ¥ be the Gaus-
sian constant, Denote by glij, 82ij (j = 1, 2, 3) the coordi-
nates and velocities of the i-th point (i=1,...,N) ina
rectangular coordinate system centered at M;, with axes
parallel to those of some inertial system (corresponding
to the customary notation Xi, ¥i, 2i; ki, ¥is Zj). Let ty be
a fixed epoch, Adopt the notation gp;;, &L gp,; (t,) (p = 1,

2) for the initial data (in particular, gp1jo = 0) and the no-
tation

Sugpi; ) (d'gpisldt ) (t—10)' 1, (p=1,2)
I=M+1

for the remaining terms of the power series for the co-
ordinates and velocities, Calculate the quantities R and
ap (k=2,..., N) from the expressions (r,i=1,...,N)

3 1/, R
djo= < > (glrjo— Eiijo)a) Y e = drip for Ti, else e;=0;
=1

N
gri=H? 2,1 m;(e;r + 1), hn= max 8|8'2r;o_‘ 82;1;
= .2

3
fr= d;ll() | 2'1 (girjo - gi;,'o) (gz,-jo —_gzijg) ;
j=

bri= max {hri; l’fa_/;fri)’; tyy= (Qridrjolz)‘h;
Cry == VG (2bri/8ri0 + @rifbri) for by > e

otherwise

Cri=4 (Sqﬁ/dﬂo)"'; s=maxcy; R=1]s;
Tt

ax = max {bx1, dy1o- (s — (s* — 48qya/dy10) ") 2V B)}.
Then within a circle Og (¢,) of radius R in the complex
plane centered at t; the functions gpjj will be holomorphic
with respect to t, and fori=2,...,N; j=1, 2, 3 they will
satisfy the inequalities

| Smg2:5(t)| < A (M) £ oy (4 — |2 — ¢, | /R)™ "

x (|t —¢t, | IR)MH, )

| 6mg2:; (8) | << Ai (M) R/ (M + 1). (2

The proof will be given in Sec, 3; it rests on an

analogous result for a polynomial system of differential
equations with constant coefficients, proved in Sec, 2 as
Proposition 2, In Sec, 4 we apply the Theorem to the prob-
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lem of the motion of the planets in the solar system, and
we give some numerical results,

2, Consider the equation

, L+1 ) .
X = DY alil]zih-. .. -z5n, (3)

mmal icI(m)

where X %! (¢, - . ., z,) represents a vector function with
argument t& C and with values in C%; a [i1 £ (q, [i],. . .,
ap[i]) is a constant vector in C%; n, L are fixed natural
numbers; iy,..., ip are integers; and

(R Zn)l i1>07 .. -yin,> 0; i1+ +ln=m)

We shall assume that the solution X = X(t) of Eq. (3) satis-
fies the initial condition

I (m) %=, ..

X (to) = Xo (4
Introduce the notation
M
XTu () &S Xt —to)/ll, X, EE(@'X/dt")s,e (5

=0

Let p < %, where £ denotes the radius of convergence
of the series XT(t). In the Taylor-series method of nu-
merical integration of the problem (3), (4), for all t

€ O (tokthe solution X will be replaced by XTy.

We pose the problem: To estimate £ and the quantity
"X ()X () — XTy (2). (6)

The solution is given by Proposition 2, whose proof rests
on the following result:

Proposition 1 (Babadzhanyants,! p. 49). Define
the quantities

a

L+1
S(v)"é’v‘ljrgax Syt S lalillh yE(0, + o),
x| )

e tm=1 iel (m,

)

| X |g_xlnaxn|zj| for X = (zq, ..., T,

J
Then the quantities X; defined in Eq. (5) will satisfy the
inequalities

-1

| X <[ Xol (X)) IT A4+ mL), 1=1,2,... 8)

Proposition 2, Adopt the definitions (5-(7) and
define piéi 1/(Ls (| X0 |)).- Then the solution X of the prob-
lem (3), (4) will be holomorphic for ¢ < O, (t) and for
those t will satisfy the inequality
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TABLE I, Sample Error Estimates for Outer Planets

t,(ID) R(d) o s a as as
2415000.5 104.9 6.0 5.3 3.6 31 2.2
2420000.5 98.7 74 5.6 34 2.8 22
2441200.5 103.3 7.0 5.4 3.7 2.8 34
2441600.5 99.4 73 5.7 3.6 2.8 34
2442000.5 133.6 5.4 5.9 3.5 2.9 31
conditions

18X W) 1< 1 Xol =1t —to |/ (IE—1 I/P)M(g)

Proof. Using the inequality (8), we obtain for any
k=1, 2,.

k
S et | <pxolGe—tolo™™ 1+ 3 Qs —tobef
l=M+1

-1

% II (WL 4+ myny).

m=)

Passing to the limit as k —+ « and recalling the binomial
law

© -1
A—ayt=1+ D d II @+myn,
1=1 m=0

we complete the proof.,

3. Proof of Theorem, Inorder to make use
of Proposition 2, we reduce the equations of the N-body
problem in rectangular coordinates to the polynomial
form (3). Let the oy be positive parameters, and adopt

. 3 2 .
the notation d,; Eé'(z (g1,; —giﬁ)z) .Forj=1,2,3 and

i=1

N (r = i) introduce the variables

r,i=1,...,

def

t det .
i = drioldri; Ur'i'i u%; Tpij = Ur; (81r; — 8135)14r

ri’
det def .
Yrij = (82r; — gzu)/aru Zr4j = Yrijlris

! V2/3 2. TrijYrije

Wei; = Zrijlris 'rz

Let1;, £2ij denote the coordinates and velocities of
the i-th bogy in an inertial coordinate system with axes
parallel to those of the adopted relative coordinate system;
then gprj — gplJ £prj — £pjj. Expressing all the variables
Upisesss that we have mtroduced in terms of {prj—
§p1 and us mg the standard equations of the N-body prob-
lem in an inertial coordinate system, we obtain the equa-
tions

i‘ri = V /2Grzur;ﬁr£; ﬁri = Vﬁcrivriﬁrif
Lpi5=0r; (@riZri; — Vﬁ Trij Br);  Urij=qrij
L= — Ve 20O riZrij + Uridris

Wrij == Opi (BrijVri — 3 V (28 riWri5);

; B (10)

ﬁﬁ: —VSGTiﬁgi + Vzlﬂ 2 (Grizzij + qrija;ri]')’
=1

where

N
def . Wi s
rij _a:il.%‘z z My (EyrWyrj evillyij)-

v=1

0ri Eotyi/drio;
The solution of the system (10) satisfies the initial
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Up; (b)) =Vri (f0) =15 Zrij (o) =wrij (o) = (g1rj0 — &Lij0)/drios
yru (tD) - zTI] (tl)) - g21‘]0 - gthO)/a‘ri;

Or; (to) =V /s z i3 () i3 (-

j=1

(11

The parameters «yj in the problem (10), (11) will obey
the constraints oy, 2 b3 in this case all the initial val-
ues (11) will be no larger than unity in absolute value,
Representing the quantities (10), (11) in the form (3), (4)
and applying Proposition 2 to this problem, we find that
its solution is holomorphic in the circle O, (f,} and that
the inequality (9) is valid, with

p= 1/91 q= ngax (Zari/drio + Qri/aﬁ)-

If in addition the parameters ayrj are subject to the
condition that g be a minimum, we obtain q =s, p =R,
If we select the smallest of all the ay; that satisfy the
conditions adopted, then we will have . = ar.

since the quantities g2jj are among the variables of
the problem (10), (11), we have already proved they are
holomorphic for ¢ & O (£,), and we have demonstrated
the inequality (1). Sinc gljj = g2ij, the functions gljj will
also be holomorphic, for the same t. From the inequality
(1) we may infer the inequality (2).

4, To illustrate the application of the theorem proved
above, we now give numerical results for the problem of
the motion of the sun, Jupiter, Saturn, Uranus, Neptune,
and Pluto (numbering them from 1 to 6 in that order).

As initial data we have adopted from Lieske? and
QOesterwinter and Cohen?® values for the coordinates and
velocities of the outer planets in a heliocentric equatorial
coordinate system (equator and equinox of 1950.0) for
five epochs: t; = 1899 Dec 12.0, 1913 Aug. 21.0, 1971
Sep 6.0, 1972 Oct 10.0, 1973 Nov 14,0. From the data
for each of these epochs we have used the equations in
the conditions of the Theorem to calculate the quantities
R (days) and ¢ appearing in the estimates (1), (2).

Table I, which gives the values of R and aj = 1000q;
for the five epochs, illustrates the practical efficacy of
our theorem for an a priori choice of step and for estimat-
ing the error involved in numerical integration of the equa-
tions of the N-body problem by the Taylor-series method.
Suppose, for example, that the masses, rectangular helio-
centric coordinates, and velocities of the outer planets
are known for epoch JD 2442000.5 = 1973 Nov 14.0, and
that it is required to calculate the coordinates and velo-
cities of these planets at epoch t; + h by solving the cor-
responding differential equations by Taylor series. Look-
ing at the last line of the table (which corresponds to this
epoch t;), we see that the Theorem assures the possibility
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of choosing a step h as long as 13349.6. If we set h = 20d
{the customary value to adopt in this problem) and use a
Taylor polynomial of order M = 10 to obtain an approxi-
mate solution at t; + h, then we may infer from the Theo-
rem that the absolute error in approximating the coordi-

nates of Jupiter is no more than 10~% X 5.4 x (1—20/133.6)'1

(20/133.6)!! x (133.6/11) ~ 6.6 X 10~!! AU, as given by the
inequality (2) with i = 2 (we have assigned to Jupiter the
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number i = 2).
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