zhChinese    enEnglish
  ПМ-ПУ  » Образование  » Программы курсов » Современные проблемы естествознания

Современные проблемы естествознания

Общий курс для студентов, обучающихся по направлению «Прикладные математика и физика»

Составители: д.ф.-м.н., проф. Егоров Н.В., к.ф.-м.н. Никифоров К.А.

1. Введение в нанотехнологию (НТ)
Цели и задачи НТ. Основные понятия и определения. Физические и технологические проблемы и ограничения микроминиатюризации полупроводниковых устройств. Применение методов НТ для уменьшения размеров приборов. Перспективные наноматериалы и направления нанотехнологии. Основные требования по созданию объектов наноэлектроники и нанофотоники. Представление о реализации квантово-размерных эффектов, оценка предельных геометрических величин элементов, где реализуется эффект размерного квантования (квантовые точки, квантовые проволоки, квантовые ямы).
2. Иерархическая система математических моделей
Распределение математических моделей нанообектов по уровням различной подробности описания. Шредингеровские модели. Модели молекулярной динамики на первых принципах. Модели классической молекулярной динамики. Решеточные детерминистические модели и решеточные алгоритмы метода вероятностных асинхронных клеточных автоматов. Модели типа реакция-диффузия. Примеры моделирования.
3. Материалы нанотехнологий

Наноструктурные элементы вещества: атомы, молекулы, фуллерены, нанотрубки, кластеры. Квантовые точки - искусственные молекулы. Наноструктурные полимеры.

Материалы на основе наноструктурных элементов: нанокристаллы, нанотрубки, наностержни и их производные. Структурные элементы для наноматериалов более высокого порядка. Углеродные нанотрубки, технология изготовления, структура и свойства. Области применения.

4. Свойства наноструктурных материалов
Механические и тепловые свойства наноструктурных материалов

Механические свойства наноструктур. Тепловые свойства наночастиц и молекулярных кластеров.

Электронные и магнитные свойства наноструктурного твердого тела

Теория низкоразмерных электронных систем (Квантовые пленки, проволоки, точки).

Электронный транспорт (туннельный эффект, кулоновская блокада). Свойства наноструктурынх магнитных материалов и частиц. Эмиссионные свойства наноструктур.

Оптические свойства наноструктурного твердого тела
5. Методы нанотехнологий
СОЗДАНИЕ ОБЪЕКТОВ ПО ПРИНЦИПУ "СВЕРХУ-ВНИЗ":

Субмикронная литография. Уменьшение размеров элементов методами традиционной планарной технологии за счет разработки, создания и применения экстремальных ультрафиолетовых источников излучения со сверхкороткой длиной волны (13,5 нм) при процессах литографии. Источники экстремального ультрафиолета. Лазерное излучение: взаимодействие с поверхностью и применение в НТ. Лазерная абляция. Многослойные брэгговские зеркала. Резисты на основе неорганических материалов. ДВУФ-нанолитограф. Нанолитография. Электронная, ионная и рентгеновская литографии. Применение "линзы Кумахова" для нанолитографии. Маски и резисты для разных типов литографии. Сравнительный анализ перспектив ультрафиолетовой, электронной, ионной и рентгеновской литографий. Нанопечатная литография. Понятие о литографически-индуцированной самосборке наноструктур.

Атомно-силовая микроскопия

СОЗДАНИЕ ОБЪЕКТОВ ПО ПРИНЦИПУ "СНИЗУ-ВВЕРХ":

Основы теории зародышеобразования. Зародышеобразование в тонких пленках. Понятие критического зародыша. Термодинамическая теория зародышеобразования. Молекулярно-кинетическая теория зародышеобразования.

Механизмы эпитаксии. Гомо- и гетероэпитаксия. Механизмы гетероэпитаксиального роста: Франка-ван-дер-Верме, Фольмера-Вебера, Странски-Крастанова.

Эпитаксиальные методы. Физическое осаждение из паровой фазы (MBE). Получение аморфных, поликристаллических и монокристаллических пленок. Молекулярно-лучевая эпитаксия элементарных полупроводников и полупроводников на основе соединений А3В5, осаждение пленок диэлектриков и металлов. Химическое осаждение из паровой фазы (CVD): его виды, основные закономерности и методика.

Самоорганизация квантовых точек и нитей. Квантовые точки. Самоорганизованный рост по механизму Странского-Крастанова. Теория самоорганизованного роста квантовых точек. Системы полупроводниковых материалов для выращивания структур с КТ. Рост наноструктур на фасетированных плоскостях. Трехмерные массивы когерентно-напряженных островков. Массивы вертикально-связанных КТ. Периодические структуры плоских доменов. Структуры с периодической модуляцией состава в эпитаксиальных пленках твердых растворов полупроводников. Полупроводниковые лазеры на основе гетероструктур с квантовыми точками.

Самоорганизация нанотрубок. Преобразование планарных напряженных гетероструктур в трехмерные, имеющие радиальную симметрию (нанотрубки). Перспективы изготовления электронных приборов с применением нанотрубок.

Локальное анодное окисление металлов.

6. Методы исследования наноструктур

Растровый электронный микроскоп. Просвечивающий электронный микроскоп. Полевой электронный микроскоп. Полевой ионный микроскоп.

Сканирующий электронный микроскоп. Зондовый сканирующий микроскоп. Сканирующий туннельный микроскоп. Атомно-силовой микроскоп. Сканирующий оптический микроскоп ближнего поля.

7. Математические модели некоторых применений нанотехнологий

Часть 1. Наноэлектроника. Квантово-механические (шредингеровские) модели наноэлектроники.

Особенности энергетического спектра частиц в системах пониженной размерности. Рассеяние частиц на потенциальной ступеньке. Потенциальный барьер конечной ширины. Интерференционные эффекты при надбарьерном пролете частиц. Частица в прямоугольной потенциальной яме. Особенности движения частиц над потенциальной ямой. Движение частицы в сферически симметричной прямоугольной потенциальной яме. Энергетический спектр и волновые функции линейного, плоского и сферического осциллятора. Энергетические состояния в прямоугольной квантовой яме сложной формы. Структура со сдвоенной квантовой ямой. Прохождение частиц через многобарьерные квантовые структуры. Энергетический спектр сверхрешеток. Классификация полупроводниковых сверхрешеток. Низкоразмерные системы с цилиндрической и сферической симметрией.

Влияние однородного электрического поля на энергетический спектр систем пониженной размерности. Энергетический спектр бесконечной прямоугольной потенциальной ямы в однородном электрическом поле. Оценка смещения энергетических уровней под действием электрического поля в прямоугольной КЯ конечной глубины. Влияние однородного электрического поля на энергетический спектр параболической потенциальной ямы. Интерференционная передислокация электронной плотности в туннельно-связанных квантовых ямах. Потенциальная ступенька в однородном электрическом поле. Прохождение частиц через двухбарьерную структуру в электрическом поле. Влияние однородного электрического поля на двухэлектронные состояния в двойной квантовой точке. Энергетический спектр сверхрешетки из квантовых точек в постоянном электрическом поле.

Распределение квантовых состояний в системах пониженной размерности . Особенности распределения плотности состояний в 2D-системах. Зависимость положения уровня Ферми от концентрации электронов и толщины пленки для 2D-систем. Распределение плотности состояний в квантовых проволоках и квантовых точках. Влияние дополнительного пространственного ограничения на энергетический спектр связанных состояний в одномерной ?-образной потенциальной яме. Энергетический спектр мелких примесных состояний в системах пониженной размерности. Влияние размерного квантования на состояния мелкого экситона. Энергетический спектр полупроводниковых пленок типа n-GаАs. Энергетический спектр электронов в размерно-квантовых пленках Gе и Si. Энергетический спектр в полупроводниковых пленках с вырожденными зонами. Энергетический спектр в квантовой точке с параболическим удерживающим потенциалом.

Экранирование электрического поля в структурах пониженной размерности. Приповерхностная область пространственного заряда. Уравнение Пуассона. Разновидности областей пространственного заряда. Решение уравнения Пуассона. Определение зависимости потенциала в области пространственного заряда от координаты. Поверхностное квантование. Экранирование электрического поля в 2D-системах. Особенности экранирования электрического поля в квантовых проволоках.

Квантовый эффект Холла в двумерном электронном газе. Эксперименты с двумерным электронным газом. Энергетический спектр электронов в постоянном однородном магнитном поле. Проводимость двумерного электронного газа. Дробный квантовый эффект Холла.

Особенности фононного спектра в системах пониженной размерности. Дисперсионные зависимости фононов в полупроводниковых сверхрешетках. Свертка ветвей акустических фононов. Локализация фононов. Интерфейсные фононы.

Транспортные явления. Стационарная дрейфовая скорость. Всплеск во времени дрейфовой скорости при воздействии электрического поля. Баллистический транспорт в полупроводниках и субмикронных приборах. Подвижность электронов в системах с селективным легированием. Особенности электрон-фононного взаимодействия в системах пониженной размерности. Рассеяние электронов в 2D-системах. Особенности рассеяния квазидвумерных электронов в сверхрешетках. ТермоЭДС в квазидвумерных системах. Асимметричные наноструктуры в магнитном поле. Эффект Ааронова - Бома.

Туннелирование через квантово-размерные структуры. Туннелирование через двухбарьерную структуру с квантовой ямой. Вольт-амперная характеристика многослойных структур. Экспериментальное исследование вольт-амперных характеристик двухбарьерных квантовых структур. Диапазон рабочих частот двухбарьерной квантовой структуры.

Тенденции создания нанотранзистора.

Проблемы одноэлектроники. Теоретические основы одноэлектроники. Реализация одноэлектронных приборов. Применение одноэлектронных приборов.

Часть 2. Квантовый компьютер и квантовые вычисления

Введение в квантовые вычисления. Определения и обозначения. Соотношение между классическим и квантовым вычислением. Основные квантовые логические принципы. Понятие кубита. Определение квантового вычисления. Примеры. Квантовые алгоритмы: основные понятия и примеры. Быстрые квантовые алгоритмы.

Проблемы реализации элементной базы квантового компьютера. Твердотельные квантовые компьютеры. Квантовый компьютер на ядерных спинах в кремнии. Квантовый компьютер на электронном спиновом резонансе в структурах Ge - Si. Квантовый компьютер на ионах в ловушках. Примеры ловушек. Храниение, обработка и передача кубитов. Квантовый компьютер и ядерно-магнитный резонанс (ЯМР). Основные принципы работы. Логические вентили на ЯМР.

Учебная литература

  1. Драгунов В.П., Неизвестный В.А., Гридчин В.А.. Основы наноэлектроники: Учебное пособие. Новосибирск: Изд-во НГТУ, 2000.
  2. Кобаяси Н. Введение в нанотехнологию. М.: БИНОМ. 2007.
  3. Тататернко Н.И., Кравченко В.Ф. Автоэмиссионные наноструктуры и приборы на их основе. М.: ФИЗМАТЛИТ. 2006.
  4. Шешин Е.П. Структура поверхности и автоэмиссионные свойства углеродных материалов. М.: Издательство МФТИ. 2001.
  5. Андриевский Р.А., Рагуля А.В. Наноструктурные материалы. М.: Академия. 2005.
  6. Полак Л.С., Михайлов А.С. Самоорганизация в неравновесных физико-химических системах. М.: Наука. 1983.
  7. Николис Г., Пригожин И. Самоорганизация в неравновесных системах. М.: Мир. 1979.
  8. Китаев А., Шень А., Вялый М. Классические и квантовые вычисления. МЦНМО. 1999.
  9. Квантовый компьютер и квантовые вычисления т.1. под ред. Садовничего В.А. Ижевск: Удмуртский университет. 1999.
  10. Квантовый компьютер и квантовые вычисления т.2. под ред. Садовничего В.А. Ижевск: Удмуртский университет. 1999.
  11. Ржанов А.В. Электронные процессы на поверхности полупроводников. М.: Наука. 1971.
  12. Воробьев Л.Е., Ивченко Е.Л., Фирсов Д.А., Шалыгин В.А. Оптические свойства наноструктур: Учебное пособие. СПб.: Наука. 2001.
  13. Гусев А.И. Нанокристаллические материалы: методы получения и свойства. Екатеринбург: УрО РАН. 1998.