

1 7 . 3 . A U G M E N T E D L A G R A N G I A N M E T H O D : E Q U A L I T Y C O N S T R A I N T S 517

PROPERTIES OF THE AUGMENTED LAGRANGIAN

We now prove two results that justify the use of the augmented Lagrangian function
and the method of multipliers for equality-constrained problems.

The first result validates the approach of Framework 17.3 by showing that when we
have knowledge of the exact Lagrange multiplier vector λ∗, the solution x∗ of (17.1) is a
strict minimizer of LA(x, λ∗;µ) for all µ sufficiently large. Although we do not know λ∗

exactly in practice, the result and its proof suggest that we can obtain a good estimate of
x∗ by minimizing LA(x, λ;µ) even when µ is not particularly large, provided that λ is a
reasonably good estimate of λ∗.

Theorem 17.5.
Let x∗ be a local solution of (17.1) at which the LICQ is satisfied (that is, the gradients

∇ci (x∗), i ∈ E , are linearly independent vectors), and the second-order sufficient conditions
specified in Theorem 12.6 are satisfied for λ � λ∗. Then there is a threshold value µ̄ such that
for all µ ≥ µ̄, x∗ is a strict local minimizer of LA(x, λ∗;µ).

PROOF. We prove the result by showing that x∗ satisfies the second-order sufficient condi-
tions to be a strict local minimizer of LA(x, λ∗;µ) (see Theorem 2.4) for all µ sufficiently
large; that is,

∇xLA(x∗, λ∗;µ) � 0, ∇2
xxLA(x∗, λ∗;µ) positive definite. (17.41)

Because x∗ is a local solution for (17.1) at which LICQ is satisfied, we can apply Theorem 12.1
to deduce that ∇xL(x∗, λ∗) � 0 and ci (x∗) � 0 for all i ∈ E , so that

∇xLA(x∗, λ∗;µ) � ∇ f (x∗)−
∑
i∈E

[λ∗i − µci (x∗)]∇ci (x∗)

� ∇ f (x∗)−
∑
i∈E

λ∗i ∇ci (x∗) � ∇xL(x∗, λ∗) � 0,

verifying the first part of (17.41), independently of µ.
For the second part of (17.41), we define A to be the constraint gradient matrix in

(17.15) evaluated at x∗, and write

∇2
xxLA(x∗, λ∗;µ) � ∇2

xxL(x∗, λ∗)+ µAT A.

If the claim in (17.41) were not true, then for each integer k ≥ 1, we could choose a vector
wk with ‖wk‖ � 1 such that

0 ≥ wT
k ∇2

xxLA(x∗, λ∗; k)wk � wT
k ∇2

xxL(x∗, λ∗)wk + k‖Awk‖2
2, (17.42)

518 C H A P T E R 1 7 . P E N A L T Y A N D A U G M E N T E D L A G R A N G I A N M E T H O D S

and therefore

‖Awk‖2
2 ≤ −(1/k)wT

k ∇2
xxL(x∗, λ∗)wk → 0, as k →∞. (17.43)

Since the vectors {wk} lie in a compact set (the surface of the unit sphere), they have an
accumulation point w. The limit (17.43) implies that Aw � 0. Moreover, by rearranging
(17.42), we have that

wT
k ∇2

xxL(x∗, λ∗)wk ≤ −k‖Awk‖2
2 ≤ 0,

so by taking limits we have wT∇2
xxL(x∗, λ∗)w ≤ 0. However, this inequality contradicts the

second-order conditions in Theorem 12.6 which, when applied to (17.1), state that we must
have wT∇2

xxL(x∗, λ∗)w > 0 for all nonzero vectors w with Aw � 0. Hence, the second
part of (17.41) holds for all µ sufficiently large. �

The second result, given by Bertsekas [19, Proposition 4.2.3], describes the more
realistic situation of λ 	� λ∗. It gives conditions under which there is a minimizer of
LA(x, λ;µ) that lies close to x∗ and gives error bounds on both xk and the updated
multiplier estimate λk+1 obtained from solving the subproblem at iteration k.

Theorem 17.6.
Suppose that the assumptions of Theorem 17.5 are satisfied at x∗ and λ∗ and let µ̄ be

chosen as in that theorem. Then there exist positive scalars δ, ε, and M such that the following
claims hold:

(a) For all λk and µk satisfying

‖λk − λ∗‖ ≤ µkδ, µk ≥ µ̄, (17.44)

the problem

min
x

LA(x, λk;µk) subject to ‖x − x∗‖ ≤ ε

has a unique solution xk . Moreover, we have

‖xk − x∗‖ ≤ M‖λk − λ∗‖/µk . (17.45)

(b) For all λk and µk that satisfy (17.44), we have

‖λk+1 − λ∗‖ ≤ M‖λk − λ∗‖/µk, (17.46)

where λk+1 is given by the formula (17.39).

1 7 . 4 . P R A C T I C A L A U G M E N T E D L A G R A N G I A N M E T H O D S 519

(c) For all λk and µk that satisfy (17.44), the matrix ∇2
xxLA(xk, λ

k;µk) is positive definite
and the constraint gradients ∇ci (xk), i ∈ E , are linearly independent.

This theorem illustrates some salient properties of the augmented Lagrangian ap-
proach. The bound (17.45) shows that xk will be close to x∗ if λk is accurate or if the penalty
parameter µk is large. Hence, this approach gives us two ways of improving the accuracy
of xk , whereas the quadratic penalty approach gives us only one option: increasing µk . The
bound (17.46) states that, locally, we can ensure an improvement in the accuracy of the
multipliers by choosing a sufficiently large value of µk . The final observation of the theorem
shows that second-order sufficient conditions for unconstrained minimization (see Theo-
rem 2.4) are also satisfied for the kth subproblem under the given conditions, so one can
expect good performance by applying standard unconstrained minimization techniques.

17.4 PRACTICAL AUGMENTED LAGRANGIAN METHODS

In this section we discuss practical augmented Lagrangian procedures, in particular, proce-
dures for handling inequality constraints. We discuss three approaches based, respectively,
on bound-constrained, linearly constrained, and unconstrained formulations. The first two
are the basis of the successful nonlinear programming codes LANCELOT [72] and MINOS [218].

BOUND-CONSTRAINED FORMULATION

Given the general nonlinear program (17.6), we can convert it to a problem with
equality constraints and bound constraints by introducing slack variables si and replacing
the general inequalities ci (x) ≥ 0, i ∈ I , by

ci (x)− si � 0, si ≥ 0, for all i ∈ I. (17.47)

Bound constraints, l ≤ x ≤ u, need not be transformed. By reformulating in this way, we
can write the nonlinear program as follows:

min
x∈IRn

f (x) subject to ci (x) � 0, i � 1, 2, . . . , m, l ≤ x ≤ u. (17.48)

(The slacks si have been incorporated into the vector x and the constraint functions ci

have been redefined accordingly. We have numbered the constraints consecutively with
i � 1, 2, . . . , m and in the discussion below we gather them into the vector function
c : IRn → IRm .) Some of the components of the lower bound vector l may be set to −∞,
signifying that there is no lower bound on the components of x in question; similarly for u.

520 C H A P T E R 1 7 . P E N A L T Y A N D A U G M E N T E D L A G R A N G I A N M E T H O D S

The bound-constrained Lagrangian (BCL) approach incorporates only the equality
constraints from (17.48) into the augmented Lagrangian, that is,

LA(x, λ;µ) � f (x)−
m∑

i�1

λi ci (x)+ µ

2

m∑
i�1

c2
i (x). (17.49)

The bound constraints are enforced explicitly in the subproblem, which has the form

min
x

LA(x, λ;µ) subject to l ≤ x ≤ u. (17.50)

After this problem has been solved approximately, the multipliers λ and the penalty
parameter µ are updated and the process is repeated.

An efficient technique for solving the nonlinear program with bound constraints
(17.50) (for fixed µ and λ) is the (nonlinear) gradient projection method discussed in
Section 18.6. By specializing the KKT conditions (12.34) to the problem (17.50), we find
that the first-order necessary condition for x to be a solution of (17.50) is that

x − P (x −∇xLA(x, λ;µ), l, u) � 0, (17.51)

where P(g, l, u) is the projection of the vector g ∈ IRn onto the rectangular box [l, u]
defined as follows

P(g, l, u)i �

⎧⎪⎨
⎪⎩

li if gi ≤ li ,

gi if gi ∈ (li , ui),

ui if gi ≥ ui ,

for all i � 1, 2, . . . , n. (17.52)

We are now ready to describe the algorithm implemented in the LANCELOT software package.

Algorithm 17.4 (Bound-Constrained Lagrangian Method).
Choose an initial point x0 and initial multipliers λ0;
Choose convergence tolerances η∗ and ω∗;
Set µ0 � 10, ω0 � 1/µ0, and η0 � 1/µ0.1

0 ;
for k � 0, 1, 2, . . .

Find an approximate solution xk of the subproblem (17.50) such that

∥∥xk − P
(
xk − ∇xLA(xk, λ

k;µk), l, u
)∥∥ ≤ ωk;

if ‖c(xk)‖ ≤ ηk

(∗ test for convergence ∗)
if ‖c(xk)‖ ≤ η∗ and

∥∥xk − P
(
xk −∇xLA(xk, λ

k;µk), l, u
)∥∥ ≤ ω∗

stop with approximate solution xk ;

1 7 . 4 . P R A C T I C A L A U G M E N T E D L A G R A N G I A N M E T H O D S 521

end (if)
(∗ update multipliers, tighten tolerances ∗)
λk+1 � λk − µkc(xk);
µk+1 � µk ;
ηk+1 � ηk/µ

0.9
k+1;

ωk+1 � ωk/µk+1;
else

(∗ increase penalty parameter, tighten tolerances ∗)
λk+1 � λk ;
µk+1 � 100µk ;
ηk+1 � 1/µ0.1

k+1;
ωk+1 � 1/µk+1;

end (if)
end (for)

The main branch in the algorithm occurs after problem (17.50) has been solved
approximately, when the algorithm tests to see if the constraints have decreased sufficiently,
as measured by the condition

‖c(xk)‖ ≤ ηk . (17.53)

If this condition holds, the penalty parameter is not changed for the next iteration because
the current value of µk is producing an acceptable level of constraint violation. The Lagrange
multiplier estimates are updated according to the formula (17.39) and the tolerances ωk and
ηk are tightened in advance of the next iteration. If, on the other hand, (17.53) does not
hold, then we increase the penalty parameter to ensure that the next subproblem will place
more emphasis on decreasing the constraint violations. The Lagrange multiplier estimates
are not updated in this case; the focus is on improving feasibility.

The constants 0.1, 0.9, and 100 appearing in Algorithm 17.4 are to some extent arbi-
trary; other values can be used without compromising theoretical convergence properties.
LANCELOT uses the gradient projection method with trust regions (see (18.61)) to solve the
bound-constrained nonlinear subproblem (17.50). In this context, the gradient projection
method constructs a quadratic model of the augmented Lagrangian LA and computes a
step d by approximately solving the trust region problem

min
d

1
2 dT

[∇2
xxL(xk, λ

k)+ µk AT
k Ak

]
d + ∇xLA(xk, λ

k;µk)T d (17.54)

subject to l ≤ xk + d ≤ u, ‖d‖∞ ≤ �,

where Ak � A(xk) and � is a trust region radius. (We can formulate the trust-region
constraint by means of the bounds −�e ≤ d ≤ �e, where e � (1, 1, . . . , 1)T .) Each
iteration of the algorithm for solving this subproblem proceeds in two stages. First, a

522 C H A P T E R 1 7 . P E N A L T Y A N D A U G M E N T E D L A G R A N G I A N M E T H O D S

projected gradient line search is performed to determine which components of d should be
set at one of their bounds. Second, a conjugate gradient iteration minimizes (17.54) with
respect to the free components of d—those not at one of their bounds. Importantly, this
algorithm does not require the factorizations of a KKT matrix or of the constraint Jacobian
Ak . The conjugate gradient iteration only requires matrix-vector products, a feature that
makes LANCELOT suitable for large problems.

The Hessian of the Lagrangian ∇2
xxL(xk, λ

k) in (17.54) can be replaced by a quasi-
Newton approximation based on the BFGS or SR1 updating formulas. LANCELOT is designed
to take advantage of partially separable structure in the objective function and constraints,
either in the evaluation of the Hessian of the Lagrangian or in the quasi-Newton updates
(see Section 7.4).

LINEARLY CONSTRAINED FORMULATION

The principal idea behind linearly constrained Lagrangian (LCL) methods is to generate
a step by minimizing the Lagrangian (or augmented Lagrangian) subject to linearizations of
the constraints. If we use the formulation (17.48) of the nonlinear programming problem,
the subproblem used in the LCL approach takes the form

min
x

Fk(x) (17.55a)

subject to c(xk)+ Ak(x − xk) � 0, l ≤ x ≤ u. (17.55b)

There are several possible choices for Fk(x). Early LCL methods defined

Fk(x) � f (x)−
m∑

i�1

λk
i c̄k

i (x), (17.56)

where λk is the current Lagrange multiplier estimate and c̄k
i (x) is the difference between

ci (x) and its linearization at xk , that is,

c̄k
i (x) � ci (x)− ci (xk)−∇ci (xk)T (x − xk). (17.57)

One can show that as xk converges to a solution x∗, the Lagrange multiplier associated with
the equality constraint in (17.55b) converges to the optimal multiplier. Therefore, one can
set λk in (17.56) to be the Lagrange multiplier for the equality constraint in (17.55b) from
the previous iteration.

Current LCL methods define Fk to be the augmented Lagrangian function

Fk(x) � f (x)−
m∑

i�1

λk
i c̄k

i (x)+ µ

2

m∑
i�1

[c̄k
i (x)]2. (17.58)

1 7 . 4 . P R A C T I C A L A U G M E N T E D L A G R A N G I A N M E T H O D S 523

This definition of Fk appears to yield more reliable convergence from remote starting points
than does (17.56), in practice.

There is a notable similarity between (17.58) and the augmented Lagrangian (17.36),
the difference being that the original constraints ci (x) have been replaced by the functions
c̄k

i (x), which capture only the “second-order and above” terms of ci . The subproblem (17.55)
differs from the augmented Lagrangian subproblem in that the new x is required to satisfy
exactly a linearization of the equality constraints, while the linear part of each constraint is
factored out of the objective via the use of c̄k

i in place of ci . A procedure similar to the one
in Algorithm 17.4 can be used for updating the penalty parameter µ and for adjusting the
tolerances that govern the accuracy of the solution of the subproblem.

Since c̄k
i (x) has zero gradient at x � xk , we have that∇Fk(xk) � ∇ f (xk), where Fk is

defined by either (17.56) or (17.58). We can also show that the Hessian of Fk is closely related
to the Hessians of the Lagrangian or augmented Lagrangian functions for (17.1). Because
of these properties, the subproblem (17.55) is similar to the SQP subproblems described in
Chapter 18, with the quadratic objective in SQP being replaced by a nonlinear objective in
LCL.

The well known code MINOS [218] uses the nonlinear model function (17.58) and solves
the subproblem via a reduced gradient method that employs quasi-Newton approximations
to the reduced Hessian of Fk . A fairly accurate solution of the subproblem is computed in
MINOS to try to ensure that the Lagrange multiplier estimates for the equality constraint
in (17.55b) (subsequently used in (17.58)) are of good quality. As a result, MINOS typically
requires more evaluations of the objective f and constraint functions ci (and their gradients)
in total than SQP methods or interior-point methods. The total number of subproblems
(17.55) that are solved in the course of the algorithm is, however, sometimes smaller than
in other approaches.

UNCONSTRAINED FORMULATION

We can obtain an unconstrained form of the augmented Lagrangian subproblem
for inequality-constrained problems by using a derivation based on the proximal point
approach. Supposing for simplicity that the problem has no equality constraints (E � ∅),
we can write the problem (17.6) equivalently as an unconstrained optimization problem:

min
x∈IRn

F(x), (17.59)

where

F(x) � max
λ≥0

{
f (x)−

∑
i∈I

λi ci (x)

}
�
{

f (x) if x is feasible,

∞ otherwise.
(17.60)

To verify these expressions for F , consider first the case of x infeasible, that is, ci (x) < 0
for some i . We can then choose λi arbitrarily large and positive while setting λ j � 0 for all

524 C H A P T E R 1 7 . P E N A L T Y A N D A U G M E N T E D L A G R A N G I A N M E T H O D S

j 	� i , to verify that F(x) is infinite in this case. If x is feasible, we have ci (x) ≥ 0 for all
i ∈ I , so the maximum is attained at λ � 0, and F(x) � f (x) in this case. By combining
(17.59) with (17.60), we have

min
x∈IRn

F(x) � min
x feasible

f (x), (17.61)

which is simply the original inequality-constrained problem. It is not practical to minimize
F directly, however, since this function is not smooth—it jumps from a finite value to an
infinite value as x crosses the boundary of the feasible set.

We can make this approach more practical by replacing F by a smooth approximation
F̂(x; λk, µk) which depends on the penalty parameter µk and Lagrange multiplier estimate
λk . This approximation is defined as follows:

F̂(x; λk, µk) � max
λ≥0

{
f (x)−

∑
i∈I

λi ci (x)− 1

2µk

∑
i∈I

(
λi − λk

i

)2

}
. (17.62)

The final term in this expression applies a penalty for any move of λ away from the previous
estimate λk ; it encourages the new maximizer λ to stay proximal to the previous estimate
λk . Since (17.62) represents a bound-constrained quadratic problem in λ, separable in the
individual components λi , we can perform the maximization explicitly, to obtain

λi �
{

0 if −ci (x)+ λk
i /µk ≤ 0;

λk
i − µkci (x) otherwise.

(17.63)

By substituting these values in (17.62), we find that

F̂(x; λk, µk) � f (x)+
∑
i∈I

ψ(ci (x), λk
i ;µk), (17.64)

where the function ψ of three scalar arguments is defined as follows:

ψ(t, σ ;µ)
def�

⎧⎪⎨
⎪⎩

−σ t + µ

2
t2 if t − σ/µ ≤ 0,

− 1

2µ
σ 2 otherwise,

(17.65)

Hence, we can obtain the new iterate xk by minimizing F̂(x; λk, µk) with respect to x ,
and use the formula (17.63) to obtain the updated Lagrange multiplier estimates λk+1. By
comparing with Framework 17.3, we see that F plays the role of LA and that the scheme
just described extends the augmented Lagrangian methods for equality constraints neatly
to the inequality-constrained case. Unlike the bound-constrained and linearly constrained
formulations, however, this unconstrained formulation is not the basis of any widely used
software packages, so its practical properties have not been tested.

1 7 . 5 . P E R S P E C T I V E S A N D S O F T W A R E 525

17.5 PERSPECTIVES AND SOFTWARE

The quadratic penalty approach is often used by practitioners when the number of con-
straints is small. In fact, minimization of Q(x;µ) is sometimes performed for just one large
value of µ. Unless µ is chosen wisely (with the benefit of experience with the underlying
application), the resulting solution may not be very accurate. Since the main software pack-
ages for constrained optimization do not implement a quadratic penalty approach, little
attention has been paid to techniques for updating the penalty parameter, adjusting the
tolerances τk , and choosing the starting points xs

k for each iteration. (See Gould [141] for a
discussion of these issues.)

Despite the intuitive appeal and simplicity of the quadratic penalty method of Frame-
work 17.1, the augmented Lagrangian method of Sections 17.3 and 17.4 is generally
preferred. The subproblems are in general no more difficult to solve, and the introduc-
tion of multiplier estimates reduces the likelihood that large values of µ will be needed to
obtain good feasibility and accuracy, thereby avoiding ill conditioning of the subproblem.
The quadratic penalty approach remains, however, an important mechanism for regularizing
other algorithms such as sequential quadratic programming (SQP) methods, as we mention
at the end of Section 17.1.

A general-purpose �1 penalty method was developed by Fletcher in the 1980’s. It
is known as the S�1QP method because it has features in common with SQP methods.
More recently, an �1 penalty method that uses linear programming subproblems has been
implemented as part of the KNITRO [46] software package. These two methods are discussed
in Section 18.5.

The �1 penalty function has received significant attention in recent years. It has
been successfully used to treat difficult problems, such as mathematical programs with
complementarity constraints (MPCCs), in which the constraints do not satisfy standard
constraint qualifications [274]. By including these problematic constraints as a penalty
term, rather than linearizing them exactly, and treating the remaining constraints using other
techniques such as SQP or interior-point, it is possible to extend the range of applicability
of these other approaches. See [8] for an active-set method and [16, 191] for interior-point
methods for MPCCs. The SNOPT software package uses an �1 penalty approach within an
SQP method as a safeguard strategy in case the quadratic model appears to be infeasible or
unbounded or to have unbounded multipliers.

Augmented Lagrangian methods have been popular for many years because, in part,
of their simplicity. The MINOS and LANCELOT packages rank among the best implemen-
tations of augmented Lagrangian methods. Both are suitable for large-scale nonlinear
programming problems. At a general level, the linearly constrained Lagrangian (LCL)
of MINOS and the bound-constrained Lagrangian (BCL) method of LANCELOT have im-
portant features in common. They differ significantly, however, in the formulation of the
step-computation subproblems and in the techniques used to solve these subproblems.
MINOS follows a reduced-space approach to handle linearized constraints and employs a
(dense) quasi-Newton approximation to the Hessian of the Lagrangian. As a result, MINOS

526 C H A P T E R 1 7 . P E N A L T Y A N D A U G M E N T E D L A G R A N G I A N M E T H O D S

is most successful for problems with relatively few degrees of freedom. LANCELOT, on the
other hand, is more effective when there are relatively few constraints. As indicated in Sec-
tion 17.4, LANCELOT does not require a factorization of the constraint Jacobian matrix A,
again enhancing its suitability for very large problems, and provides a variety of Hessian ap-
proximation options and preconditioners. The PENNON software package [184] is based on an
augmented Lagrangian approach and has the advantage of permitting semi-definite matrix
constraints.

A weakness of both the bound-constrained and unconstrained Lagrangian methods
is that they complicate constraints by squaring them in (17.49); progress in feasibility is
only achieved through the minimization of the augmented Lagrangian. In contrast, the LCL
formulation (17.55) promotes steady progress toward feasibility by performing a Newton-
like step on the constraints. Not surprisingly, numerical experience has shown an advantage
of MINOS over LANCELOT for problems with linear constraints.

Smooth exact penalty functions have been constructed from the augmented La-
grangian functions of Section 17.3, but these are considerably more complicated. As an
example, we mention the function of Fletcher for equality-constrained problems, defined as
follows:

φF(x;µ) � f (x)− λ(x)T c(x)+ µ

2

∑
i∈E

ci (x)2. (17.66)

The Lagrange multiplier estimates λ(x) are defined explicitly in terms of x via the least-
squares estimate, defined as

λ(x) � [A(x)A(x)T]−1 A(x)∇ f (x). (17.67)

The function φF is differentiable and exact, though the threshold value µ∗ defining the
exactness property is not as easy to specify as for the nonsmooth �1 penalty function.
Drawbacks of the penalty function φF include the cost of evaluating λ(x) via (17.67), the fact
that λ(x) is not uniquely defined when A(x) does not have full rank, and the observation
that estimates of λ may be poor when A(x) is nearly singular.

NOTES AND REFERENCES

The quadratic penalty function was first proposed by Courant [81]. Gould [140]
addresses the issue of stable determination of the Newton step for Q(x;µk). His formula
(2.2) differs from our formula (17.20) in the right-hand-side, but both systems give rise to
the same p component.

The augmented Lagrangian method was proposed by Hestenes [167] and Powell [240].
In the early days it was known as the “method of multipliers.” A key reference in this
area is Bertsekas [18]. Chapters 1–3 of that book contain a thorough motivation of the
method that outlines its connections to other approaches. Other introductory discussions

1 7 . 5 . P E R S P E C T I V E S A N D S O F T W A R E 527

are given by Fletcher [101, Section 12.2], and Polak [236, Section 2.8]. The extension to
inequality constraints in the unconstrained formulation was described by Rockafellar [269]
and Powell [243].

Linearly constrained Lagrangian methods were proposed by Robinson [266] and
Rosen and Kreuser [271]. The MINOS implementation is due to Murtagh and Saunders [218]
and the LANCELOT implementation due to Conn, Gould and Toint [72]. We have followed
Friedlander and Saunders [114] in our use of the terms “linearly constrained Lagrangian”
and “bound-constrained Lagrangian.”

✐ E X E R C I S E S

✐ 17.1

(a) Write an equality-constrained problem which has a local solution and for which the
quadratic penalty function Q is unbounded for any value of the penalty parameter.

(b) Write a problem with a single inequality constraint that has the same unboundedness
property.

✐ 17.2 Draw the contour lines of the quadratic penalty function Q for problem (17.5)
corresponding to µ � 1. Find the stationary points of Q.

✐ 17.3 Minimize the quadratic penalty function for problem (17.3) for µk �
1, 10, 100, 1000 using an unconstrained minimization algorithm. Set τk � 1/µk in Frame-
work 17.1, and choose the starting point xs

k+1 for each minimization to be the solution
for the previous value of the penalty parameter. Report the approximate solution of each
penalty function.

✐ 17.4 For z ∈ IR, show that the function min(0, z)2 has a discontinuous second deriva-
tive at z � 0. (It follows that quadratic penalty function (17.7) may not have continuous
second derivatives even when f and ci , i ∈ E ∪ I , in (17.6) are all twice continuously
differentiable.)

✐ 17.5 Write a quadratic program similar to (17.31) for the case when the norm in
(17.32) is the infinity norm.

✐ 17.6 Suppose that a nonlinear program has a minimizer x∗ with Lagrange multiplier
vector λ∗. One can show (Fletcher [101, Theorem 14.3.2]) that the function φ1(x;µ) does
not have a local minimizer at x∗ unless µ > ‖λ∗‖∞. Verify that this observation holds for
Example 17.1.

✐ 17.7 Verify (17.28).

✐ 17.8 Prove the second part of Theorem 17.4. That is, if x̂ is a stationary point of
φ1(x;µ) for all µ sufficiently large, but x̂ is infeasible for problem (17.6), then x̂ is

528 C H A P T E R 1 7 . P E N A L T Y A N D A U G M E N T E D L A G R A N G I A N M E T H O D S

an infeasible stationary point. (Hint: Use the fact that D(φ1(x̂;µ); p) � ∇ f (x̂)T p +
µD(h(x̂); p), where h is defined in (17.27).)

✐ 17.9 Verify that the KKT conditions for the bound-constrained problem

min
x∈IRn

φ(x) subject to l ≤ x ≤ u

are equivalent to the compactly stated condition

x − P(x − ∇φ(x), l, u) � 0,

where the projection operator P onto the rectangular box [l, u] is defined in (17.52).

✐ 17.10 Calculate the gradient and Hessian of the LCL objective functions Fk(x) defined
by (17.56) and (17.58). Evaluate these quantities at x � xk .

✐ 17.11 Show that the function ψ(t, σ ;µ) defined in (17.65) has a discontinuity in
its second derivative with respect to t when t � σ/µ. Assuming that ci : IRn → IR
is twice continuously differentiable, write down the second partial derivative matrix of
ψ(ci (x), λi ;µ) with respect to x for the two cases ci (x) < λi/µ and ci (x) ≥ aλi/µ.

✐ 17.12 Verify that the multipliers λi , i ∈ I defined in (17.63) are indeed those that
attain the maximum in (17.62), and that the equality (17.64) holds. Hint: Use the fact that
KKT conditions for the problem

max φ(x) subject to x ≥ 0

indicate that at a stationary point, we either have xi � 0 and [∇φ(x)]i ≤ 0, or xi > 0 and
[∇φ(x)]i � 0.

This is page 529
Printer: Opaque this

C H A P T E R18
Sequential
Quadratic
Programming

One of the most effective methods for nonlinearly constrained optimization generates steps
by solving quadratic subproblems. This sequential quadratic programming (SQP) approach
can be used both in line search and trust-region frameworks, and is appropriate for small
or large problems. Unlike linearly constrained Lagrangian methods (Chapter 17), which are
effective when most of the constraints are linear, SQP methods show their strength when
solving problems with significant nonlinearities in the constraints.

All the methods considered in this chapter are active-set methods; a more descriptive
title for this chapter would perhaps be “Active-Set Methods for Nonlinear Programming.”

530 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

In Chapter 14 we study interior-point methods for nonlinear programming, a competing
approach for handling inequality-constrained problems.

There are two types of active-set SQP methods. In the IQP approach, a general
inequality-constrained quadratic program is solved at each iteration, with the twin goals
of computing a step and generating an estimate of the optimal active set. EQP methods
decouple these computations. They first compute an estimate of the optimal active set, then
solve an equality-constrained quadratic program to find the step. In this chapter we study
both IQP and EQP methods.

Our development of SQP methods proceeds in two stages. First, we consider local
methods that motivate the SQP approach and allow us to introduce the step computation
techniques in a simple setting. Second, we consider practical line search and trust-region
methods that achieve convergence from remote starting points. Throughout the chapter we
give consideration to the algorithmic demands of solving large problems.

18.1 LOCAL SQP METHOD

We begin by considering the equality-constrained problem

min f (x) (18.1a)

subject to c(x) � 0, (18.1b)

where f : IRn → IR and c : IRn → IRm are smooth functions. The idea behind the
SQP approach is to model (18.1) at the current iterate xk by a quadratic programming
subproblem, then use the minimizer of this subproblem to define a new iterate xk+1. The
challenge is to design the quadratic subproblem so that it yields a good step for the nonlinear
optimization problem. Perhaps the simplest derivation of SQP methods, which we present
now, views them as an application of Newton’s method to the KKT optimality conditions
for (18.1).

From (12.33), we know that the Lagrangian function for this problem is L(x, λ) �
f (x)− λT c(x). We use A(x) to denote the Jacobian matrix of the constraints, that is,

A(x)T � [∇c1(x),∇c2(x), . . . ,∇cm(x)], (18.2)

where ci (x) is the i th component of the vector c(x). The first-order (KKT) conditions
(12.34) of the equality-constrained problem (18.1) can be written as a system of n + m
equations in the n + m unknowns x and λ:

F(x, λ) �
[
∇ f (x)− A(x)T λ

c(x)

]
� 0. (18.3)

Any solution (x∗, λ∗) of the equality-constrained problem (18.1) for which A(x∗) has full

1 8 . 1 . L O C A L S Q P M E T H O D 531

rank satisfies (18.3). One approach that suggests itself is to solve the nonlinear equations
(18.3) by using Newton’s method, as described in Chapter 11.

The Jacobian of (18.3) with respect to x and λ is given by

F ′(x, λ) �
[
∇2

xxL(x, λ) −A(x)T

A(x) 0

]
. (18.4)

The Newton step from the iterate (xk, λk) is thus given by

[
xk+1

λk+1

]
�
[

xk

λk

]
+
[

pk

pλ

]
, (18.5)

where pk and pλ solve the Newton–KKT system

[
∇2

xxLk −AT
k

Ak 0

][
pk

pλ

]
�
[
−∇ fk + AT

k λk

−ck

]
. (18.6)

This Newton iteration is well defined when the KKT matrix in (18.6) is nonsingular. We
saw in Chapter 16 that this matrix is nonsingular if the following assumption holds at
(x, λ) � (xk, λk).

Assumptions 18.1.
(a) The constraint Jacobian A(x) has full row rank;

(b) The matrix ∇2
xxL(x, λ) is positive definite on the tangent space of the constraints, that is,

dT∇2
xxL(x, λ)d > 0 for all d 	� 0 such that A(x)d � 0.

The first assumption is the linear independence constraint qualification discussed in
Chapter 12 (see Definition 12.4), which we assume throughout this chapter. The second
condition holds whenever (x, λ) is close to the optimum (x∗, λ∗) and the second-order suf-
ficient condition is satisfied at the solution (see Theorem 12.6). The Newton iteration (18.5),
(18.6) can be shown to be quadratically convergent under these assumptions (see Theo-
rem 18.4) and constitutes an excellent algorithm for solving equality-constrained problems,
provided that the starting point is close enough to x∗.

SQP FRAMEWORK

There is an alternative way to view the iteration (18.5), (18.6). Suppose that at the
iterate (xk, λk) we model problem (18.1) using the quadratic program

min
p

fk +∇ f T
k p + 1

2 pT∇2
xxLk p (18.7a)

subject to Ak p + ck � 0. (18.7b)

532 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

If Assumptions 18.1 hold, this problem has a unique solution (pk, lk) that satisfies

∇2
xxLk pk +∇ fk − AT

k lk � 0, (18.8a)

Ak pk + ck � 0. (18.8b)

The vectors pk and lk can be identified with the solution of the Newton equations (18.6). If
we subtract AT

k λk from both sides of the first equation in (18.6), we obtain

[
∇2

xxLk −AT
k

Ak 0

][
pk

λk+1

]
�
[
−∇ fk

−ck

]
. (18.9)

Hence, by nonsingularity of the coefficient matrix, we have that λk+1 � lk and that pk solves
(18.7) and (18.6).

The new iterate (xk+1, λk+1) can therefore be defined either as the solution of the
quadratic program (18.7) or as the iterate generated by Newton’s method (18.5), (18.6)
applied to the optimality conditions of the problem. Both viewpoints are useful. The Newton
point of view facilitates the analysis, whereas the SQP framework enables us to derive
practical algorithms and to extend the technique to the inequality-constrained case.

We now state the SQP method in its simplest form.

Algorithm 18.1 (Local SQP Algorithm for solving (18.1)).
Choose an initial pair (x0, λ0); set k ← 0;
repeat until a convergence test is satisfied

Evaluate fk , ∇ fk , ∇2
xxLk , ck , and Ak ;

Solve (18.7) to obtain pk and lk ;
Set xk+1 ← xk + pk and λk+1 ← lk ;

end (repeat)

We note in passing that, in the objective (18.7a) of the quadratic program, we could
replace the linear term ∇ f T

k p by ∇xL(xk, λk)T p, since the constraint (18.7b) makes the
two choices equivalent. In this case, (18.7a) is a quadratic approximation of the Lagrangian
function. This fact provides a motivation for our choice of the quadratic model (18.7): We
first replace the nonlinear program (18.1) by the problem of minimizing the Lagrangian
subject to the equality constraints (18.1b), then make a quadratic approximation to the
Lagrangian and a linear approximation to the constraints to obtain (18.7).

INEQUALITY CONSTRAINTS

The SQP framework can be extended easily to the general nonlinear programming
problem

min f (x) (18.10a)

1 8 . 2 . P R E V I E W O F P R A C T I C A L S Q P M E T H O D S 533

subject to ci (x) � 0, i ∈ E, (18.10b)

ci (x) ≥ 0, i ∈ I. (18.10c)

To model this problem we now linearize both the inequality and equality constraints to
obtain

min
p

fk +∇ f T
k p + 1

2 pT∇2
xxLk p (18.11a)

subject to ∇ci (xk)T p + ci (xk) � 0, i ∈ E, (18.11b)

∇ci (xk)T p + ci (xk) ≥ 0, i ∈ I. (18.11c)

We can use one of the algorithms for quadratic programming described in Chapter 16 to
solve this problem. The new iterate is given by (xk + pk, λk+1) where pk and λk+1 are the
solution and the corresponding Lagrange multiplier of (18.11). A local SQP method for
(18.10) is thus given by Algorithm 18.1 with the modification that the step is computed
from (18.11).

In this IQP approach the set of active constraints Ak at the solution of (18.11)
constitutes our guess of the active set at the solution of the nonlinear program. If the
SQP method is able to correctly identify this optimal active set (and not change its guess
at a subsequent iteration) then it will act like a Newton method for equality-constrained
optimization and will converge rapidly. The following result gives conditions under which
this desirable behavior takes place. Recall that strict complementarity is said to hold at a
solution pair (x∗, λ∗) if there is no index i ∈ I such that λ∗i � ci (x∗) � 0.

Theorem 18.1 (Robinson [267]).
Suppose that x∗ is a local solution of (18.10) at which the KKT conditions are satis-

fied for some λ∗. Suppose, too, that the linear independence constraint qualification (LICQ)
(Definition 12.4), the strict complementarity condition (Definition 12.5), and the second-order
sufficient conditions (Theorem 12.6) hold at (x∗, λ∗). Then if (xk, λk) is sufficiently close to
(x∗, λ∗), there is a local solution of the subproblem (18.11) whose active set Ak is the same as
the active set A(x∗) of the nonlinear program (18.10) at x∗.

It is also remarkable that, far from the solution, the SQP approach is usually able to improve
the estimate of the active set and guide the iterates toward a solution; see Section 18.7.

18.2 PREVIEW OF PRACTICAL SQP METHODS

IQP AND EQP

There are two ways of designing SQP methods for solving the general nonlinear
programming problem (18.10). The first is the approach just described, which solves at

534 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

every iteration the quadratic subprogram (18.11), taking the active set at the solution of
this subproblem as a guess of the optimal active set. This approach is referred to as the
IQP (inequality-constrained QP) approach; it has proved to be quite successful in practice.
Its main drawback is the expense of solving the general quadratic program (18.11), which
can be high when the problem is large. As the iterates of the SQP method converge to
the solution, however, solving the quadratic subproblem becomes economical if we use
information from the previous iteration to make a good guess of the optimal solution of the
current subproblem. This warm-start strategy is described below.

The second approach selects a subset of constraints at each iteration to be the so-called
working set, and solves only equality-constrained subproblems of the form (18.7), where
the constraints in the working sets are imposed as equalities and all other constraints are
ignored. The working set is updated at every iteration by rules based on Lagrange multiplier
estimates, or by solving an auxiliary subproblem. This EQP (equality-constrained QP)
approach has the advantage that the equality-constrained quadratic subproblems are less
expensive to solve than (18.11) in the large-scale case.

An example of an EQP method is the sequential linear-quadratic programming
(SLQP) method discussed in Section 18.5. This approach constructs a linear program by
omitting the quadratic term pT∇2

xxLk p from (18.11a) and adding a trust-region constraint
‖p‖∞ ≤ �k to the subproblem. The active set of the resulting linear programming sub-
problem is taken to be the working set for the current iteration. The method then fixes the
constraints in the working set and solves an equality-constrained quadratic program (with
the term pT∇2

xxLk p reinserted) to obtain the SQP step. Another successful EQP method
is the gradient projection method described in Section 16.7 in the context of bound con-
strained quadratic programs. In this method, the working set is determined by minimizing
a quadratic model along the path obtained by projecting the steepest descent direction onto
the feasible region.

ENFORCING CONVERGENCE

To be practical, an SQP method must be able to converge from remote starting points
and on nonconvex problems. We now outline how the local SQP strategy can be adapted to
meet these goals.

We begin by drawing an analogy with unconstrained optimization. In its simplest
form, the Newton iteration for minimizing a function f takes a step to the minimizer of the
quadratic model

mk(p) � fk +∇ f T
k p + 1

2 pT∇2 fk p.

This framework is useful near the solution, where the Hessian ∇2 f (xk) is normally positive
definite and the quadratic model has a well defined minimizer. When xk is not close to the
solution, however, the model function mk may not be convex. Trust-region methods ensure
that the new iterate is always well defined and useful by restricting the candidate step pk

1 8 . 3 . A L G O R I T H M I C D E V E L O P M E N T 535

to some neighborhood of the origin. Line search methods modify the Hessian in mk(p) to
make it positive definite (possibly replacing it by a quasi-Newton approximation Bk), to
ensure that pk is a descent direction for the objective function f .

Similar strategies are used to globalize SQP methods. If ∇2
xxLk is positive definite on

the tangent space of the active constraints, the quadratic subproblem (18.7) has a unique
solution. When ∇2

xxLk does not have this property, line search methods either replace it
by a positive definite approximation Bk or modify ∇2

xxLk directly during the process of
matrix factorization. In all these cases, the subproblem (18.7) becomes well defined, but the
modifications may introduce unwanted distortions in the model.

Trust-region SQP methods add a constraint to the subproblem, limiting the step to
a region within which the model (18.7) is considered reliable. These methods are able to
handle indefinite Hessians∇2

xxLk . The inclusion of the trust region may, however, cause the
subproblem to become infeasible, and the procedures for handling this situation complicate
the algorithms and increase their computational cost. Due to these tradeoffs, neither of the
two SQP approaches—line search or trust-region—is currently regarded as clearly superior
to the other.

The technique used to accept or reject steps also impacts the efficiency of SQP methods.
In unconstrained optimization, the merit function is simply the objective f , and it remains
fixed throughout the minimization procedure. For constrained problems, we use devices
such as a merit function or a filter (see Section 15.4). The parameters or entries used in
these devices must be updated in a way that is compatible with the step produced by the
SQP method.

18.3 ALGORITHMIC DEVELOPMENT

In this section we expand on the ideas of the previous section and describe various ingredients
needed to produce practical SQP algorithms. We focus on techniques for ensuring that the
subproblems are always feasible, on alternative choices for the Hessian of the quadratic
model, and on step-acceptance mechanisms.

HANDLING INCONSISTENT LINEARIZATIONS

A possible difficulty with SQP methods is that the linearizations (18.11b), (18.11c) of
the nonlinear constraints may give rise to an infeasible subproblem. Consider, for example,
the case in which n � 1 and the constraints are x ≤ 1 and x2 ≥ 4. When we linearize these
constraints at xk � 1, we obtain the inequalities

−p ≥ 0 and 2p − 3 ≥ 0,

which are inconsistent.

536 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

To overcome this difficulty, we can reformulate the nonlinear program (18.10) as the
�1 penalty problem

min
x,v,w,t

f (x)+ µ
∑
i∈E

(vi + wi)+ µ
∑
i∈I

ti (18.12a)

subject to ci (x) � vi − wi , i ∈ E, (18.12b)

ci (x) ≥ −ti , i ∈ I, (18.12c)

v, w, t ≥ 0, (18.12d)

for some positive choice of the penalty parameter µ. The quadratic subproblem (18.11)
associated with (18.12) is always feasible. As discussed in Chapter 17, if the nonlinear
problem (18.10) has a solution x∗ that satisfies certain regularity assumptions, and if the
penalty parameter µ is sufficiently large, then x∗ (along with v∗i � w∗

i � 0, i ∈ E and
t∗i � 0, i ∈ I) is a solution of the penalty problem (18.12). If, on the other hand, there is no
feasible solution to the nonlinear problem and µ is large enough, then the penalty problem
(18.12) usually determines a stationary point of the infeasibility measure. The choice of µ

has been discussed in Chapter 17 and is considered again in Section 18.5. The SNOPT software
package [127] uses the formulation (18.12), which is sometimes called the elastic mode, to
deal with inconsistencies of the linearized constraints.

Other procedures for relaxing the constraints are presented in Section 18.5 in the
context of trust-region methods.

FULL QUASI-NEWTON APPROXIMATIONS

The Hessian of the Lagrangian ∇2
xxL(xk, λk) is made up of second derivatives of

the objective function and constraints. In some applications, this information is not easy to
compute, so it is useful to consider replacing the Hessian∇2

xxL(xk, λk) in (18.11a) by a quasi-
Newton approximation. Since the BFGS and SR1 formulae have proved to be successful in
the context of unconstrained optimization, we can employ them here as well.

The update for Bk that results from the step from iterate k to iterate k + 1 makes use
of the vectors sk and yk defined as follows:

sk � xk+1 − xk, yk � ∇xL(xk+1, λk+1)− ∇xL(xk, λk+1). (18.13)

We compute the new approximation Bk+1 using the BFGS or SR1 formulae given, respec-
tively, by (6.19) and (6.24). We can view this process as the application of quasi-Newton
updating to the case in which the objective function is given by the LagrangianL(x, λ) (with
λ fixed). This viewpoint immediately reveals the strengths and weaknesses of this approach.

If ∇2
xxL is positive definite in the region where the minimization takes place, then

BFGS quasi-Newton approximations Bk will reflect some of the curvature information of the
problem, and the iteration will converge robustly and rapidly, just as in the unconstrained
BFGS method. If, however, ∇2

xxL contains negative eigenvalues, then the BFGS approach

1 8 . 3 . A L G O R I T H M I C D E V E L O P M E N T 537

of approximating it with a positive definite matrix may be problematic. BFGS updating
requires that sk and yk satisfy the curvature condition sT

k yk > 0, which may not hold when
sk and yk are defined by (18.13), even when the iterates are close to the solution.

To overcome this difficulty, we could skip the BFGS update if the condition

sT
k yk ≥ θsT

k Bksk (18.14)

is not satisfied, where θ is a positive parameter (10−2, say). This strategy may, on occasion,
yield poor performance or even failure, so it cannot be regarded as adequate for general-
purpose algorithms.

A more effective modification ensures that the update is always well defined by
modifying the definition of yk .

Procedure 18.2 (Damped BFGS Updating).
Given: symmetric and positive definite matrix Bk ;
Define sk and yk as in (18.13) and set

rk � θk yk + (1− θk)Bksk,

where the scalar θk is defined as

θk �
{

1 if sT
k yk ≥ 0.2sT

k Bksk,

(0.8sT
k Bksk)/(sT

k Bksk − sT
k yk) if sT

k yk < 0.2sT
k Bksk;

(18.15)

Update Bk as follows:

Bk+1 � Bk − BksksT
k Bk

sT
k Bksk

+ rkr T
k

sT
k rk

. (18.16)

The formula (18.16) is simply the standard BFGS update formula, with yk replaced
by rk . It guarantees that Bk+1 is positive definite, since it is easy to show that when θk 	� 1
we have

sT
k rk � 0.2sT

k Bksk > 0. (18.17)

To gain more insight into this strategy, note that the choice θk � 0 gives Bk+1 � Bk , while
θk � 1 gives the (possibly indefinite) matrix produced by the unmodified BFGS update. A
value θk ∈ (0, 1) thus produces a matrix that interpolates the current approximation Bk

and the one produced by the unmodified BFGS formula. The choice of θk ensures that the
new approximation stays close enough to the current approximation Bk to ensure positive
definiteness.

538 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

Damped BFGS updating often works well but it, too, can behave poorly on difficult
problems. It still fails to address the underlying problem that the Lagrangian Hessian may
not be positive definite. For this reason, SR1 updating may be more appropriate, and is
indeed a good choice for trust-region SQP methods. An SR1 approximation to the Hessian
of the Lagrangian is obtained by applying formula (6.24) with sk and yk defined by (18.13),
using the safeguards described in Chapter 6. Line search methods cannot, however, accept
indefinite Hessian approximations and would therefore need to modify the SR1 formula,
possibly by adding a sufficiently large multiple of the identity matrix; see the discussion
around (19.25).

All quasi-Newton approximations Bk discussed above are dense n × n matrices that
can be expensive to store and manipulate in the large-scale case. Limited-memory updating
is useful in this context and is often implemented in software packages. (See (19.29) for an
implementation of limited-memory BFGS in a constrained optimization algorithm.)

REDUCED-HESSIAN QUASI-NEWTON APPROXIMATIONS

When we examine the KKT system (18.9) for the equality-constrained problem (18.1),
we see that the part of the step pk in the range space of AT

k is completely determined by
the second block row Ak pk � −ck . The Lagrangian Hessian ∇2

xxLk affects only the part
of pk in the orthogonal subspace, namely, the null space of Ak . It is reasonable, therefore,
to consider quasi-Newton methods that find approximations to only that part of ∇2

xxLk

that affects the component of pk in the null space of Ak . In this section, we consider
quasi-Newton methods based on these reduced-Hessian approximations. Our focus is on
equality-constrained problems in this section, as existing SQP methods for the full problem
(18.10) use reduced-Hessian approaches only after an equality-constrained subproblem has
been generated.

To derive reduced-Hessian methods, we consider solution of the step equations (18.9)
by means of the null space approach of Section 16.2. In that section, we defined matrices Yk

and Zk whose columns span the range space of AT
k and the null space of Ak , respectively. By

writing

pk � Yk pY + Zk pZ, (18.18)

and substituting into (18.9), we obtain the following system to be solved for pY and pZ:

(AkYk)pY � −ck, (18.19a)(
Z T

k ∇2
xxLk Zk

)
pZ � −Z T

k ∇2
xxLkYk pY − Z T

k ∇ fk . (18.19b)

From the first block of equations in (18.9) we see that the Lagrange multipliers λk+1, which
are sometimes called QP multipliers, can be obtained by solving

(AkYk)T λk+1 � Y T
k (∇ fk +∇2

xxLk pk). (18.20)

1 8 . 3 . A L G O R I T H M I C D E V E L O P M E N T 539

We can avoid computation of the Hessian ∇2
xxLk by introducing several approx-

imations in the null-space approach. First, we delete the term involving pk from the
right-hand-side of (18.20), thereby decoupling the computations of pk and λk+1 and elimi-
nating the need for∇2

xxLk in this term. This simplification can be justified by observing that
pk converges to zero as we approach the solution, whereas ∇ fk normally does not. There-
fore, the multipliers computed in this manner will be good estimates of the QP multipliers
near the solution. More specifically, if we choose Yk � AT

k (which is a valid choice for Yk

when Ak has full row rank; see (15.16)), we obtain

λ̂k+1 � (Ak AT
k)−1 Ak∇ fk . (18.21)

These are called the least-squares multipliers because they can also be derived by solving the
problem

min
λ

‖∇xL(xk, λ)‖2
2 �

∥∥∇ fk − AT
k λ
∥∥2

2
. (18.22)

This observation shows that the least-squares multipliers are useful even when the current
iterate is far from the solution, because they seek to satisfy the first-order optimality condition
in (18.3) as closely as possible. Conceptually, the use of least-squares multipliers transforms
the SQP method from a primal-dual iteration in x and λ to a purely primal iteration in the
x variable alone.

Our second simplification of the null-space approach is to remove the cross term
Z T

k ∇2
xxLkYk pY in (18.19b), thereby yielding the simpler system

(Z T
k ∇2

xxLk Zk)pZ � −Z T
k ∇ fk . (18.23)

This approach has the advantage that it needs to approximate only the matrix Z T
k ∇2

xxLk Zk ,
not the (n − m) × m cross-term matrix Z T

k ∇2
xxLkYk , which is a relatively large matrix

when m � n − m. Dropping the cross term is justified when Z T
k ∇2

xxLk Zk is replaced by a
quasi-Newton approximation because the normal component pY usually converges to zero
faster than the tangential component pZ, thereby making (18.23) a good approximation of
(18.19b).

Having dispensed with the partial Hessian Z T
k ∇2

xxLkYk , we discuss how to approximate
the remaining part Z T

k ∇2
xxLk Zk . Suppose we have just taken a step αk pk � xk+1 − xk �

αk Zk pZ + αkYk pY. By Taylor’s theorem, writing ∇2
xxLk+1 � ∇2

xxL(xk+1, λk+1), we have

∇2
xxLk+1αk pk ≈ ∇xL(xk + αk pk, λk+1)− ∇xL(xk, λk+1).

By premultiplying by Z T
k , we have

Z T
k ∇2

xxLk+1 Zkαk pZ (18.24)

≈ −Z T
k ∇2

xxLk+1Ykαk pY + Z T
k [∇xL(xk + αk pk, λk+1)− ∇xL(xk, λk+1)] .

540 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

If we drop the cross term Z T
k ∇2

xxLk+1Ykαk pY (using the rationale discussed earlier), we see
that the secant equation for Mk can be defined by

Mk+1sk � yk, (18.25)

where sk and yk are given by

sk � αk pZ, yk � Z T
k [∇xL(xk + αk pk, λk+1)−∇xL(xk, λk+1)] . (18.26)

We then apply the BFGS or SR1 formulae, using these definitions for the correction vectors
sk and yk , to define the new approximation Mk+1. An advantage of this reduced-Hessian
approach, compared to full-Hessian quasi-Newton approximations, is that the reduced
Hessian is much more likely to be positive definite, even when the current iterate is some
distance from the solution. When using the BFGS formula, the safeguarding mechanism
discussed above will be required less often in line search implementations.

MERIT FUNCTIONS

SQP methods often use a merit function to decide whether a trial step should be
accepted. In line search methods, the merit function controls the size of the step; in trust-
region methods it determines whether the step is accepted or rejected and whether the
trust-region radius should be adjusted. A variety of merit functions have been used in
SQP methods, including nonsmooth penalty functions and augmented Lagrangians. We
limit our discussion to exact, nonsmooth merit functions typified by the �1 merit function
discussed in Chapters 15 and 17.

For the purpose of step computation and evaluation of a merit function, inequality
constraints c(x) ≥ 0 are often converted to the form

c̄(x, s) � c(x)− s � 0,

where s ≥ 0 is a vector of slacks. (The condition s ≥ 0 is typically not monitored by the
merit function.) Therefore, in the discussion that follows we assume that all constraints are
in the form of equalities, and we focus our attention on problem (18.1).

The �1 merit function for (18.1) takes the form

φ1(x;µ) � f (x)+ µ‖c(x)‖1. (18.27)

In a line search method, a step αk pk will be accepted if the following sufficient decrease
condition holds:

φ1(xk + αk pk;µk) ≤ φ1(xk, µk)+ ηαk D(φ1(xk;µ); pk), η ∈ (0, 1), (18.28)

1 8 . 3 . A L G O R I T H M I C D E V E L O P M E N T 541

where D(φ1(xk;µ); pk) denotes the directional derivative of φ1 in the direction pk . This
requirement is analogous to the Armijo condition (3.4) for unconstrained optimization
provided that pk is a descent direction, that is, D(φ1(xk;µ); pk) < 0. This descent condition
holds if the penalty parameterµ is chosen sufficiently large, as we show in the following result.

Theorem 18.2.
Let pk and λk+1 be generated by the SQP iteration (18.9). Then the directional derivative

of φ1 in the direction pk satisfies

D(φ1(xk;µ); pk) � ∇ f T
k pk − µ‖ck‖1. (18.29)

Moreover, we have that

D(φ1(xk;µ); pk) ≤ −pT
k ∇2

xxLk pk − (µ− ‖λk+1‖∞)‖ck‖1. (18.30)

PROOF. By applying Taylor’s theorem (see (2.5)) to f and ci , i � 1, 2, . . . , m, we obtain

φ1(xk + αp;µ)− φ1(xk;µ) � f (xk + αp)− fk + µ‖c(xk + αp)‖1 − µ‖ck‖1

≤ α∇ f T
k p + γα2‖p‖2 + µ‖ck + αAk p‖1 − µ‖ck‖1,

where the positive constant γ bounds the second-derivative terms in f and c. If p � pk is
given by (18.9), we have that Ak pk � −ck , so for α ≤ 1 we have that

φ1(xk + αpk;µ)− φ1(xk;µ) ≤ α[∇ f T
k pk − µ‖ck‖1]+ α2γ ‖pk‖2.

By arguing similarly, we also obtain the following lower bound:

φ1(xk + αpk;µ)− φ1(xk;µ) ≥ α[∇ f T
k pk − µ‖ck‖1]− α2γ ‖pk‖2.

Taking limits, we conclude that the directional derivative of φ1 in the direction pk is given by

D(φ1(xk;µ); pk) � ∇ f T
k pk − µ‖ck‖1, (18.31)

which proves (18.29). The fact that pk satisfies the first equation in (18.9) implies that

D(φ1(xk;µ); pk) � −pT
k ∇2

xxLk pk + pT
k AT

k λk+1 − µ‖ck‖1.

From the second equation in (18.9), we can replace the term pT
k AT

k λk+1 in this expression by
−cT

k λk+1. By making this substitution in the expression above and invoking the inequality

−cT
k λk+1 ≤ ‖ck‖1‖λk+1‖∞,

we obtain (18.30). �

542 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

It follows from (18.30) that pk will be a descent direction for φ1 if pk 	� 0, ∇2
xxLk is

positive definite and

µ > ‖λk+1‖∞. (18.32)

(A more detailed analysis shows that this assumption on ∇2
xxLk can be relaxed; we need

only the reduced Hessian Z T
k ∇2

xxLk Zk to be positive definite.)
One strategy for choosing the new value of the penalty parameter µ in φ1(x;µ) at

every iteration is to increase the previous value, if necessary, so as to satisfy (18.32), with
some margin. It has been observed, however, that this strategy may select inappropriate
values of µ and often interferes with the progress of the iteration.

An alternative approach, based on (18.29), is to require that the directional derivative
be sufficiently negative in the sense that

D(φ1(xk;µ); pk) � ∇ f T
k pk − µ‖ck‖1 ≤ −ρµ‖ck‖1,

for some ρ ∈ (0, 1). This inequality holds if

µ ≥ ∇ f T
k pk

(1− ρ)‖ck‖1
. (18.33)

This choice is not dependent on the Lagrange multipliers and performs adequately in
practice.

A more effective strategy for choosing µ, which is appropriate both in the line search
and trust-region contexts, considers the effect of the step on a model of the merit function.
We define a (piecewise) quadratic model of φ1 by

qµ(p) � fk + ∇ f T
k p + σ

2
pT∇2

xxLk p + µm(p), (18.34)

where

m(p) � ‖ck + Ak p‖1,

and σ is a parameter to be defined below. After computing a step pk , we choose the penalty
parameter µ large enough that

qµ(0)− qµ(pk) ≥ ρµ[m(0)− m(pk)], (18.35)

for some parameter ρ ∈ (0, 1). It follows from (18.34) and (18.7b) that inequality (18.35)
is satisfied for

µ ≥ ∇ f T
k pk + (σ/2)pT

k ∇2
xxLk pk

(1− ρ)‖ck‖1
. (18.36)

If the value of µ from the previous iteration of the SQP method satisfies (18.36), it is left
unchanged. Otherwise, µ is increased so that it satisfies this inequality with some margin.

1 8 . 3 . A L G O R I T H M I C D E V E L O P M E N T 543

The constant σ is used to handle the case in which the Hessian ∇2
xxLk is not positive

definite. We define σ as

σ �
{

1 if pT
k ∇2

xxLk pk > 0,

0 otherwise.
(18.37)

It is easy to verify that, if µ satisfies (18.36), this choice of σ ensures that D(φ1(xk;µ); pk) ≤
−ρµ‖ck‖1, so that pk is a descent direction for the merit function φ1. This conclusion is not
always valid if σ � 1 and pT

k ∇2
xxLk pk < 0. By comparing (18.33) and (18.36) we see that,

when σ > 0, the strategy based on (18.35) selects a larger penalty parameter, thus placing
more weight on the reduction of the constraints. This property is advantageous if the step
pk decreases the constraints but increases the objective, for in this case the step has a better
chance of being accepted by the merit function.

SECOND-ORDER CORRECTION

In Chapter 15, we showed by means of Example 15.4 that many merit functions can
impede progress of an optimization algorithm, a phenomenon known as the Maratos effect.
We now show that the step analyzed in that example is, in fact, produced by an SQP method.

❏ EXAMPLE 18.1 (EXAMPLE 15.4, REVISITED)

Consider problem (15.34). At the iterate xk � (cos θ, sin θ)T , let us compute a search
direction pk by solving the SQP subproblem (18.7) with∇2

xxLk replaced by∇2
xxL(x∗, λ∗) �

I . Since

fk � − cos θ, ∇ fk �
[

4 cos θ − 1

4 sin θ

]
, AT

k �
[

2 cos θ

2 sin θ

]
,

the quadratic subproblem (18.7) takes the form

min
p

(4 cos θ − 1)p1 + 4 sin θp2 + 1

2
p2

1 +
1

2
p2

2

subject to p2 + cot θp1 � 0.

By solving this subproblem, we obtain the direction

pk �
[

sin2 θ

− sin θ cos θ

]
, (18.38)

which coincides with (15.35).
❐

544 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

We mentioned in Section 15.4 that the difficulties associated with the Maratos effect
can be overcome by means of a second-order correction. There are various ways of applying
this technique; we describe one possible implementation next.

Suppose that the SQP method has computed a step pk from (18.11). If this step yields
an increase in the merit function φ1, a possible cause is that our linear approximations to
the constraints are not sufficiently accurate. To overcome this deficiency, we could re-solve
(18.11) with the linear terms ci (xk)+ ∇ci (xk)T p replaced by quadratic approximations,

ci (xk)+∇ci (xk)T p + 1
2 pT∇2ci (xk)p. (18.39)

However, even if the Hessians of the constraints are individually available, the resulting
quadratically constrained subproblem may be too difficult to solve. Instead, we evaluate the
constraint values at the new point xk + pk and make use of the following approximations.
By Taylor’s theorem, we have

ci (xk + pk) ≈ ci (xk)+ ∇ci (xk)T pk + 1
2 pT

k ∇2ci (xk)pk . (18.40)

Assuming that the (still unknown) second-order step p will not be too different from pk ,
we can approximate the last term in (18.39) as follows:

pT∇2ci (xk)p � pT
k ∇2ci (xk)pk . (18.41)

By making this substitution in (18.39) and using (18.40), we obtain the second-order
correction subproblem

min
p

∇ f T
k p + 1

2 pT∇2
xxLk p

subject to ∇ci (xk)T p + di � 0, i ∈ E,

∇ci (xk)T p + di ≥ 0, i ∈ I,

where

di � ci (xk + pk)− ∇ci (xk)T pk, i ∈ E ∪ I.

The second-order correction step requires evaluation of the constraints ci (xk + pk)
for i ∈ E ∪ I , and therefore it is preferable not to apply it every time the merit function
increases. One strategy is to use it only if the increase in the merit function is accompanied
by an increase in the constraint norm.

It can be shown that when the step pk is generated by the SQP method (18.11) then,
near a solution satisfying second-order sufficient conditions, the algorithm above takes
either the full step pk or the corrected step pk + p̂k . The merit function does not interfere
with the iteration, so superlinear convergence is attained, as in the local algorithm.

1 8 . 4 . A P R A C T I C A L L I N E S E A R C H S Q P M E T H O D 545

18.4 A PRACTICAL LINE SEARCH SQP METHOD

From the discussion in the previous section, we can see that there is a wide variety of line
search SQP methods that differ in the way the Hessian approximation is computed, in the
step acceptance mechanism, and in other algorithmic features. We now incorporate some of
these ideas into a concrete, practical SQP algorithm for solving the nonlinear programming
problem (18.10). To keep the description simple, we will not include a mechanism such
as (18.12) to ensure the feasibility of the subproblem, or a second-order correction step.
Rather, the search direction is obtained simply by solving the subproblem (18.11). We also
assume that the quadratic program (18.11) is convex, so that we can solve it by means of the
active-set method for quadratic programming (Algorithm 16.3) described in Chapter 16.

Algorithm 18.3 (Line Search SQP Algorithm).
Choose parameters η ∈ (0, 0.5), τ ∈ (0, 1), and an initial pair (x0, λ0);
Evaluate f0, ∇ f0, c0, A0;
If a quasi-Newton approximation is used, choose an initial n × n symmetric
positive definite Hessian approximation B0, otherwise compute ∇2

xxL0;
repeat until a convergence test is satisfied

Compute pk by solving (18.11); let λ̂ be the corresponding multiplier;

Set pλ ← λ̂− λk ;
Choose µk to satisfy (18.36) with σ � 1;
Set αk ← 1;
while φ1(xk + αk pk;µk) > φ1(xk;µk)+ ηαk D1(φ(xk;µk)pk)

Reset αk ← τααk for some τα ∈ (0, τ];
end (while)
Set xk+1 ← xk + αk pk and λk+1 ← λk + αk pλ;
Evaluate fk+1, ∇ fk+1, ck+1, Ak+1, (and possibly ∇2

xxLk+1);
If a quasi-Newton approximation is used, set

sk ← αk pk and yk ← ∇xL(xk+1, λk+1)−∇xL(xk, λk+1),
and obtain Bk+1 by updating Bk using a quasi-Newton formula;

end (repeat)

We can achieve significant savings in the solution of the quadratic subproblem
by warm-start procedures. For example, we can initialize the working set for each QP
subproblem to be the final active set from the previous SQP iteration.

We have not given particulars of the quasi-Newton approximation in Algorithm 18.3.
We could use, for example, a limited-memory BFGS approach that is suitable for large-scale
problems. If we use an exact Hessian ∇2

xxLk , we assume that it is modified as necessary to
be positive definite on the null space of the equality constraints.

Instead of a merit function, we could employ a filter (see Section 15.4) in the inner
“while” loop to determine the steplength αk . As discussed in Section 15.4, a feasibility
restoration phase is invoked if a trial steplength generated by the backtracking line search is

546 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

smaller than a given threshold. Regardless of whether a merit function or filter are used, a
mechanism such as second-order correction can be incorporated to overcome the Maratos
effect.

18.5 TRUST-REGION SQP METHODS

Trust-region SQP methods have several attractive properties. Among them are the facts that
they do not require the Hessian matrix∇2

xxLk in (18.11) to be positive definite, they control
the quality of the steps even in the presence of Hessian and Jacobian singularities, and they
provide a mechanism for enforcing global convergence. Some implementations follow an
IQP approach and solve an inequality-constrained subproblem, while others follow an EQP
approach.

The simplest way to formulate a trust-region SQP method is to add a trust-region
constraint to subproblem (18.11), as follows:

min
p

fk +∇ f T
k p + 1

2 pT∇2
xxLk p (18.43a)

subject to ∇ci (xk)T p + ci (xk) � 0, i ∈ E, (18.43b)

∇ci (xk)T p + ci (xk) ≥ 0, i ∈ I, (18.43c)

‖p‖ ≤ �k . (18.43d)

Even if the constraints (18.43b), (18.43c) are compatible, this problem may not always have a
solution because of the trust-region constraint (18.43d). We illustrate this fact in Figure 18.1
for a problem that contains only one equality constraint whose linearization is represented
by the solid line. In this example, any step p that satisfies the linearized constraint must lie
outside the trust region, which is indicated by the circle of radius �k . As we see from this
example, a consistent system of equalities and inequalities may not have a solution if we
restrict the norm of the solution.

To resolve the possible conflict between the linear constraints (18.43b), (18.43c) and
the trust-region constraint (18.43d), it is not appropriate simply to increase �k until the set
of steps p satisfying the linear constraints intersects the trust region. This approach would
defeat the purpose of using the trust region in the first place as a way to define a region
within which we trust the model (18.43a)–(18.43c) to accurately reflect the behavior of the
objective and constraint functions. Analytically, it would harm the convergence properties
of the algorithm.

A more appropriate viewpoint is that there is no reason to satisfy the linearized
constraints exactly at every step; rather, we should aim to improve the feasibility of these
constraints at each step and to satisfy them exactly only if the trust-region constraint permits
it. This point of view is the basis of the three classes of methods discussed in this section:
relaxation methods, penalty methods, and filter methods.

1 8 . 5 . T R U S T - R E G I O N S Q P M E T H O D S 547

1
p∆k

p
2

c+pA kk =0

Figure 18.1 Inconsistent constraints in trust-region model.

A RELAXATION METHOD FOR EQUALITY-CONSTRAINED OPTIMIZATION

We describe this method in the context of the equality-constrained optimization
problem (18.1); its extension to general nonlinear programs is deferred to Chapter 19
because it makes use of interior-point techniques. (Active-set extensions of the relaxation
approach have been proposed, but have not been fully explored.)

At the iterate xk , we compute the SQP step by solving the subproblem

min
p

fk +∇ f T
k p + 1

2
pT∇2

xxLk p (18.44a)

subject to Ak p + ck � rk, (18.44b)

‖p‖2 ≤ �k . (18.44c)

The choice of the relaxation vector rk requires careful consideration, as it impacts the
efficiency of the method. Our goal is to choose rk as the smallest vector such that (18.44b),
(18.44c) are consistent for some reduced value of trust-region radius �k . To do so, we first
solve the subproblem

min
v

‖Akv + ck‖2
2 (18.45a)

subject to ‖v‖2 ≤ 0.8�k . (18.45b)

Denoting the solution of this subproblem by vk , we define

rk � Akvk + ck . (18.46)

548 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

We now compute the step pk by solving (18.44), define the new iterate xk+1 � xk + pk ,
and obtain new multiplier estimates λk+1 using the least squares formula (18.21). Note that
the constraints (18.44b), (18.44c) are consistent because they are satisfied by the vector
p � vk .

At first glance, this approach appears to be impractical because problems (18.44)
and (18.45) are not particularly easy to solve, especially when ∇2

xxLk is indefinite. Fortu-
nately, we can design efficient procedures for computing useful inexact solutions of these
problems.

We solve the auxiliary subproblem (18.45) by the dogleg method described in Chap-
ter 4. This method requires a Cauchy step pU, which is the minimizer of the objective
(18.45a) along the direction −AT

k ck , and a “Newton step” pB, which is the unconstrained
minimizer of (18.45a). Since the Hessian in (18.45a) is singular, there are infinitely many
possible choices of pB, all of which satisfy Ak pB + ck � 0. We choose the one with smallest
Euclidean norm by setting

pB � −AT
k [Ak AT

k]−1ck .

We now take vk to be the minimizer of (18.45a) along the path defined by pU, pB, and the
formula (4.16).

The preferred technique for computing an approximate solution pk of (18.44) is the
projected conjugate gradient method of Algorithm 16.2. We apply this algorithm to the
equality-constrained quadratic program (18.44a)–(18.44b), monitoring satisfaction of the
trust-region constraint (18.44c) and stopping if the boundary of this region is reached or
if negative curvature is detected; see Section 7.1. Algorithm 16.2 requires a feasible starting
point, which may be chosen as vk .

A merit function that fits well with this approach is the nonsmooth �2 function
φ2(x;µ) � f (x)+ µ‖c(x)‖2. We model it by means of the function

qµ(p) � fk +∇ f T
k p + 1

2
pT∇2

xxLk p + µm(p), (18.47)

where

m(p) � ‖ck + Ak p‖2,

(see (18.34)). We choose the penalty parameter large enough that inequality (18.35) is
satisfied. To judge the acceptability of a step pk , we monitor the ratio

ρk � aredk

predk

� φ2(xk, µ)− φ2(xk + pk, µ)

qµ(0)− qµ(pk)
. (18.48)

We can now give a description of this trust-region SQP method for the equality-
constrained optimization problem (18.1).

1 8 . 5 . T R U S T - R E G I O N S Q P M E T H O D S 549

Algorithm 18.4 (Byrd–Omojokun Trust-Region SQP Method).
Choose constants ε > 0 and η, γ ∈ (0, 1);
Choose starting point x0, initial trust region �0 > 0;
for k � 0, 1, 2, . . .

Compute fk , ck , ∇ fk , Ak ;

Compute multiplier estimates λ̂k by (18.21);

if ‖∇ fk − AT
k λ̂k‖∞< ε and ‖ck‖∞ < ε

stop with approximate solution xk ;
Solve normal subproblem (18.45) for vk and compute rk from (18.46);
Compute ∇2

xxLk or a quasi-Newton approximation;
Compute pk by applying the projected CG method to (18.44);
Choose µk to satisfy (18.35);
Compute ρk � aredk/predk ;
if ρk > η

Set xk+1 � xk + pk ;
Choose �k+1 to satisfy �k+1 ≥ �k ;

else
Set xk+1 � xk ;
Choose �k+1 to satisfy �k+1 ≤ γ ‖pk‖;

end (for).

A second-order correction can be added to avoid the Maratos effect. Beyond the cost
of evaluating the objective function f and constraints c, the main costs of this algorithm
lie in the projected CG iteration, which requires products of the Hessian ∇2

xxLk with
vectors, and in the factorization and backsolves with the projection matrix (16.32); see
Section 16.3.

S�1QP (SEQUENTIAL �1 QUADRATIC PROGRAMMING)

In this approach we move the linearized constraints (18.43b), (18.43c) into the ob-
jective of the quadratic program, in the form of an �1 penalty term, to obtain the following
subproblem:

min
p

qµ(p)
def� fk +∇ f T

k p + 1

2
pT∇2

xxLk p + µ
∑
i∈E

|ci (xk)+∇ci (xk)T p|

+µ
∑
i∈I

[ci (xk)+∇ci (xk)T p]− (18.49)

subject to ‖p‖∞ ≤ �k,

550 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

for some penalty parameter µ, where we use the notation [y]− � max{0,−y}. Introducing
slack variables v,w, t , we can reformulate this problem as follows:

min
p,v,w,t

fk +∇ f T
k p + 1

2
pT∇2

xxLk p + µ
∑
i∈E

(vi + wi)+ µ
∑
i∈I

ti (18.50a)

s.t. ∇ci (xk)T p + ci (xk) � vi − wi , i ∈ E, (18.50b)

∇ci (xk)T p + ci (xk) ≥ −ti , i ∈ I, (18.50c)

v, w, t ≥ 0, (18.50d)

‖p‖∞ ≤ �k . (18.50e)

This formulation is simply a linearization of the elastic-mode formulation (18.12) with the
addition of a trust-region constraint.

The constraints of this problem are always consistent. Since the trust region has been
defined using the �∞ norm, (18.50) is a smooth quadratic program that can be solved
by means of a quadratic programming algorithm. Warm-start strategies can significantly
reduce the solution time of (18.50) and are invariably used in practical implementations.

It is natural to use the �1 merit function

φ1(x;µ) � f (x)+ µ
∑
i∈E

|ci (x)| + µ
∑
i∈I

[ci (x)]− (18.51)

to determine step acceptance. In fact, the function qµ defined in (18.49) can be viewed
as a model of φ1(x, µ) at xk in which we approximate each constraint function ci by
its linearization, and replace f by a quadratic function whose curvature term includes
information from both objective and constraints.

After computing the step pk from (18.50), we determine the ratio ρk via (18.48),
using the merit function φ1 and defining qµ by (18.49). The step is accepted or rejected
according to standard trust-region rules, as implemented in Algorithm 18.4. A second-order
correction step can be added to prevent the occurence of the Maratos effect.

The S�1QP approach has several attractive properties. Not only does the formula-
tion (18.49) overcome the possible inconsistency among the linearized constraints, but
it also ensures that the trust-region constraint can always be satisfied. Further, the ma-
trix ∇2

xxLk can be used without modification in subproblem (18.50) or else can be
replaced by a quasi-Newton approximation. There is no requirement for it to be positive
definite.

This choice of the penalty parameter µ plays an important role in the efficiency
of this method. Unlike the SQP methods described above, which use a penalty function
only to determine the acceptability of a trial point, the step pk of the S�1QP algorithm
depends on µ. Values of µ that are too small can lead the algorithm away from the solution
(Section 17.2), while excessively large values can result in slow progress. To obtain good

1 8 . 5 . T R U S T - R E G I O N S Q P M E T H O D S 551

practical performance over a range of applications, the value of µ must be chosen carefully
at each iteration; see Algorithm 18.5 below.

SEQUENTIAL LINEAR-QUADRATIC PROGRAMMING (SLQP)

The SQP methods discussed above require the solution of a general (inequality-
constrained) quadratic problem at each iteration. The cost of solving this subproblem
imposes a limit on the size of problems that can be solved in practice. In addition, the
incorporation of (indefinite) second derivative information in SQP methods has proved to
be difficult [147].

The sequential linear-quadratic programming (SLQP) method attempts to overcome
these concerns by computing the step in two stages, each of which scales well with the
number of variables. First, a linear program (LP) is solved to identify a working set W .
Second, there is an equality-constrained quadratic programming (EQP) phase in which the
constraints in the working set W are imposed as equalities. The total step of the algorithm
is a combination of the steps obtained in the linear programming and equality-constrained
phases, as we now discuss.

In the LP phase, we would like to solve the problem

min
p

fk + ∇ f T
k p (18.52a)

subject to ci (xk)+∇ci (xk)T p � 0, i ∈ E, (18.52b)

ci (xk)+∇ci (xk)T p ≥ 0, i ∈ I, (18.52c)

‖p‖∞ ≤ �LP

k , (18.52d)

which differs from the standard SQP subproblem (18.43) only in that the second-order
term in the objective has been omitted and that an �∞ norm is used to define the trust
region. Since the constraints of (18.52) may be inconsistent, we solve instead the �1 penalty
reformulation of (18.52) defined by

min
p

lµ(p)
def� fk + ∇ f T

k p + µ
∑
i∈E

|ci (xk)+∇ci (xk)T p|

+ µ
∑
i∈I

[ci (xk)+ ∇ci (xk)T p]− (18.53a)

subject to ‖p‖∞ ≤ �LP

k . (18.53b)

By introducing slack variables as in (18.50), we can reformulate (18.53) as an LP. The solution
of (18.53), which we denote by pLP, is computed by the simplex method (Chapter 13). From
this solution we obtain the following explicit estimate of the optimal active set:

Ak(pLP) � {i ∈ E | ci (xk)+∇ci (xk)T pLP � 0} ∪ {i ∈ I | ci (xk)+∇ci (xk)T pLP � 0}.

552 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

Likewise, we define the set Vk of violated constraints as

Vk(pLP) � {i ∈ E | ci (xk)+ ∇ci (xk)T pLP 	� 0} ∪ {i ∈ I | ci (xk)+ ∇ci (xk)T pLP < 0}.

We define the working set Wk as some linearly independent subset of the active set Ak(pLP).
To ensure that the algorithm makes progress on the penalty function φ1, we define the
Cauchy step,

pC � αLP pLP, (18.54)

where αLP ∈ (0, 1] is a steplength that provides sufficient decrease in the model qµ defined
in (18.49).

Given the working set Wk , we now solve an equality-constrained quadratic program
(EQP) treating the constraints in Wk as equalities and ignoring all others. We thus obtain
the subproblem

min
p

fk + 1
2 pT∇2

xxLk p +
⎛
⎝∇ fk + µk

∑
i∈Vk

γi∇ci (xk)

⎞
⎠

T

p (18.55a)

subject to ci (xk)+ ∇ci (xk)T p � 0, i ∈ E ∩Wk, (18.55b)

ci (xk)+ ∇ci (xk)T p � 0, i ∈ I ∩Wk, (18.55c)

‖p‖2 ≤ �k, (18.55d)

where γi is the algebraic sign of the i-th violated constraint. Note that the trust region
(18.55d) is spherical, and that �k is distinct from the trust-region radius �LP

k used in
(18.53b). Problem (18.55) is solved for the vector pQ by applying the projected conjugated
gradient procedure of Algorithm 16.2, handling the trust-region constraint by Steihaug’s
strategy (Algorithm 7.2). The total step pk of the SLQP method is given by

pk � pC + αQ(pQ − pC),

where αQ ∈ [0, 1] is a steplength that approximately minimizes the model qµ defined in
(18.49).

The trust-region radius �k for the EQP phase is updated using standard trust-region
update strategies. The choice of radius �LP

k+1 for the LP phase is more delicate, since it
influences our guess of the optimal active set. The value of �LP

k+1 should be set to be a little
larger than the total step pk , subject to some other restrictions [49]. The multiplier estimates
λk used in the Hessian ∇2

xxLk are least squares estimates (18.21) using the working set Wk ,
and modified so that λi ≥ 0 for i ∈ I .

An appealing feature of the SLQP algorithm is that established techniques for solving
large-scale versions of the LP and EQP subproblems are readily available. High quality LP

1 8 . 5 . T R U S T - R E G I O N S Q P M E T H O D S 553

software is capable of solving problems with very large numbers of variables and constraints,
while the solution of the EQP subproblem can be performed efficiently using the projected
conjugate gradient method.

A TECHNIQUE FOR UPDATING THE PENALTY PARAMETER

We have mentioned that penalty methods such as S�1QP and SLQP can be sensitive to
the choice of the penalty parameter µ. We now discuss a procedure for choosing µ that has
proved to be effective in practice and is supported by global convergence guarantees. The
goal is to choose µ small enough to avoid an unnecessary imbalance in the merit function,
but large enough to cause the step to make sufficient progress in linearized feasibility at each
iteration. We present this procedure in the context of the S�1QP method and then describe
its extension to the SLQP approach.

We define a piecewise linear model of constraint violation at a point xk by

mk(p) �
∑
i∈E

|ci (xk)+ ∇ci (xk)T p| +
∑
i∈I

[ci (xk)+ ∇ci (xk)T p)]−, (18.56)

so that the objective of the SQP subproblem (18.49) can be written as

qµ(p) � fk +∇ f T
k p + 1

2
pT∇2

xxLk p + µmk(p). (18.57)

We begin by solving the QP subproblem (18.49) (or equivalently, (18.50)) using the previous
value µk−1 of the penalty parameter. If the constraints (18.50b), (18.50c) are satisfied with
the slack variables vi , wi , ti all equal to zero (that is, mk(pk) � 0), then the current
value of µ is adequate, and we set µk � µk−1. This is the felicitous case in which we can
achieve linearized feasibility with a step pk that is no longer in norm than the trust-region
radius.

If mk(p) > 0, on the other hand, it may be appropriate to increase the penalty
parameter. The question is: by how much? To obtain a reference value, we re-solve the
QP (18.49) using an “infinite” value of µ, by which we mean that the objective function
in (18.49) is replaced by mk(p). After computing the new step, which we denote by p∞,
two outcomes are possible. If mk(p∞) � 0, meaning that the linearized constraints are
feasible within the trust region, we choose µk > µk−1 such that mk(pk) � 0. Otherwise, if
mk(p∞) > 0, we choose µk ≥ µk−1 such that the reduction in mk caused by the step pk is
at least a fraction of the (optimal) reduction given by p∞.

The selection of µk > µk−1 is achieved in all cases by successively increasing the
current trial value of µ (by a factor of 10, say) and re-solving the quadratic program (18.49).
To describe this strategy more precisely, we write the solution of the QP problem (18.49) as
p(µ) to stress its dependence on the penalty parameter. Likewise, p∞ denotes the minimizer
of mk(p) subject to the trust-region constraint (18.50e). The following algorithm describes
the selection of the penalty parameter µk and the computation of the S�1QP step pk .

554 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

Algorithm 18.5 (Penalty Update and Step Computation).
Initial data: xk, µk−1 > 0, �k > 0, and parameters ε1, ε2 ∈ (0, 1).

Solve the subproblem (18.50) with µ � µk−1 to obtain p(µk−1);
if mk(p(µk−1)) � 0

Set µ+ ← µk−1;
else

Compute p∞;
if mk(p∞) � 0

Find µ+ > µk−1 such that mk(p(µ+)) � 0;
else

Find µ+ ≥ µk−1 such that
mk(0)− mk(p(µ+)) ≥ ε1[mk(0)− mk(p∞)];

end(if)
end(if)

Increase µ+ if necessary to satisfy
qµ+(0)− qµ+(p(µ+)) ≥ ε2µ

+[mk(0)− mk(p(µ+))];
Set µk ← µ+ and pk ← p(µ+).

(Note that the inequality in the penultimate line is the same as condition (18.35).)
Although Algorithm 18.5 requires the solution of some additional quadratic programs,
we hope to reduce the total number of iterations (and the total number of QP solves)
by identifying an appropriate penalty parameter value more quickly than rules based on
feasibility monitoring (see Framework 17.2).

Numerical experience indicates that these savings occur when an adaptation of Al-
gorithm 18.5 is used in the SLQP method. This adaptation is obtained simply by setting
∇2

xxLk � 0 in the definition (18.49) of qµ and applying Algorithm 18.5 to determine µ

and to compute the LP step pLP. The extra LP solves required by Algorithm 18.5 in this
case are typically inexpensive, requiring relatively few simplex iterations, because we can
use warm-start information from LPs solved earlier, with different values of the penalty
parameter.

18.6 NONLINEAR GRADIENT PROJECTION

In Section 16.7, we discussed the gradient projection method for bound constrained
quadratic programming. It is not difficult to extend this method to the problem

min f (x) subject to l ≤ x ≤ u, (18.58)

where f is a nonlinear function and l and u are vectors of lower and upper bounds,
respectively.

1 8 . 6 . N O N L I N E A R G R A D I E N T P R O J E C T I O N 555

We begin by describing a line search approach. At the current iterate xk , we form the
quadratic model

qk(x) � fk + ∇ f T
k (x − xk)+ 1

2 (x − xk)T Bk(x − xk), (18.59)

where Bk is a positive definite approximation to ∇2 f (xk). We then use the gradient projec-
tion method for quadratic programming (Algorithm 16.5) to find an approximate solution
x̂ of the subproblem

min qk(x) subject to l ≤ x ≤ u. (18.60)

The search direction is defined as pk � x̂ − xk and the new iterate is given by xk+1 �
xk + αk pk , where the steplength αk is chosen to satisfy

f (xk + αk pk) ≤ f (xk)+ ηαk∇ f T
k pk

for some parameter η ∈ (0, 1).
To see that the search direction pk is indeed a descent direction for the objective

function, we use the properties of Algorithm 16.5, as discussed in Section 16.7. Recall
that this method searches along a piecewise linear path—the projected steepest descent
path—for the Cauchy point xc, which minimizes qk along this path. It then identifies the
components of x that are at their bounds and holds these components constant while
performing an unconstrained minimization of qk over the remaining components to obtain
the approximate solution x̂ of the subproblem (18.60).

The Cauchy point xc satisfies qk(xc) < qk(xk) if the projected gradient is nonzero.
Since Algorithm 16.5 produces a subproblem solution x̂ with qk(x̂) ≤ qk(xc), we have

fk � qk(xk) > qk(xc) ≥ qk(x̂) � fk +∇ f T
k pk + 1

2 pT
k Bk pk .

This inequality implies that ∇ f T
k pk < 0, since Bk is assumed to be positive definite.

We now consider a trust-region gradient projection method for solving (18.58). We
begin by forming the quadratic model (18.59), but since there is no requirement for qk to
be convex, we can define Bk to be the Hessian ∇2 f (xk) or a quasi-Newton approximation
obtained from the BFGS or SR1 formulas. The step pk is obtained by solving the subproblem

min qk(x) subject to { l ≤ x ≤ u, ‖x − xk‖∞ ≤ �k }, (18.61)

for some �k > 0. This problem can be posed as a bound-constrained quadratic program as
follows:

min qk(x) subject to max(l, xk −�ke) ≤ x ≤ min(u, xk +�ke),

556 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

where e � (1, 1, . . . , 1)T . Algorithm 16.5 can be used to solve this subproblem. The step
pk is accepted or rejected following standard trust-region strategies, and the radius �k is
updated according to the agreement between the change in f and the change in qk produced
by the step pk ; see Chapter 4.

The two gradient projection methods just outlined require solution of an inequality-
constrained quadratic subproblem at each iteration, and so are formally IQP methods. They
can, however, be viewed also as EQP methods because of their use of Algorithm 16.5 in solving
the subproblem. This algorithm first identifies a working set (by finding the Cauchy point)
and then solves an equality-constrained subproblem (by fixing the working-set constraints
at their bounds). For large problems, it is efficient to perform the subpace minimization
(16.74) by using the conjugate gradient method. A preconditioner is sometimes needed to
make this approach practical; the most popular choice is the incomplete (and modified)
Cholesky factorization outlined in Algorithm 7.3.

The gradient projection approach can be extended in principle to more general (linear
or convex) constraints. Practical implementations are however limited to the bound con-
strained problem (18.58) because of the high cost of computing projections onto general
constraint sets.

18.7 CONVERGENCE ANALYSIS

Numerical experience has shown that the SQP and SLQP methods discussed in this chapter
often converge to a solution from remote starting points. Hence, there has been considerable
interest in understanding what drives the iterates toward a solution and what can cause the
algorithms to fail. These global convergence studies have been valuable in improving the
design and implementation of algorithms.

Some early results make strong assumptions, such as boundedness of multipliers, well
posedness of the subproblem (18.11), and regularity of constraint Jacobians. More recent
studies relax many of these assumptions with the goal of understanding both the successful
and unsuccessful outcomes of the iteration. We now state a classical global convergence
result that gives conditions under which a standard SQP algorithm always identifies a KKT
point of the nonlinear program.

Consider an SQP method that computes a search direction pk by solving the quadratic
program (18.11). We assume that the Hessian ∇2

xxLk is replaced in (18.11a) by some
symmetric and positive definite approximation Bk . The new iterate is defined as xk+1+αk pk ,
where αk is computed by a backtracking line search, starting from the unit steplength, and
terminating when

φ1(xk + αk pk;µ) ≤ φ1(xk;µ)− ηαk(qµ(0)− qµ(pk)),

where η ∈ (0, 1), with φ1 defined as in (18.51) and qµ defined as in (18.49). To establish
the convergence result, we assume that each quadratic program (18.11) is feasible and

1 8 . 7 . C O N V E R G E N C E A N A L Y S I S 557

determines a bounded solution pk . We also assume that the penalty parameter µ is fixed for
all k and sufficiently large.

Theorem 18.3.
Suppose that the SQP algorithm just described is applied to the nonlinear program (18.10).

Suppose that the sequences {xk} and {xk+ pk} are contained in a closed, bounded, convex region
of IRn in which f and ci have continuous first derivatives. Suppose that the matrices Bk and
multipliers are bounded and that µ satisfies µ ≥ ‖λk‖∞ + ρ for all k, where ρ is a positive
constant. Then all limit points of the sequence {xk} are KKT points of the nonlinear program
(18.10).

The conclusions of the theorem are quite satisfactory, but the assumptions are some-
what restrictive. For example, the condition that the sequence {xk + pk} stays within in a
bounded set rules out the case in which the Hessians Bk or constraint Jacobians become
ill conditioned. Global convergence results that are established under more realistic condi-
tions are surveyed by Conn, Gould, and Toint [74]. An example of a result of this type is
Theorem 19.2. Although this theorem is established for a nonlinear interior-point method,
similar results can be established for trust-region SQP methods.

RATE OF CONVERGENCE

We now derive conditions that guarantee the local convergence of SQP methods, as
well as conditions that ensure a superlinear rate of convergence. For simplicity, we limit our
discussion to Algorithm 18.1 for equality-constrained optimization, and consider both exact
Hessian and quasi-Newton versions. The results presented here can be applied to algorithms
for inequality-constrained problems once the active set has settled at its final optimal value
(see Theorem 18.1).

We begin by listing a set of assumptions on the problem that will be useful in this
section.

Assumptions 18.2.
The point x∗ is a local solution of problem (18.1) at which the following conditions hold.

(a) The functions f and c are twice differentiable in a neighborhood of x∗ with Lipschitz
continuous second derivatives.

(b) The linear independence constraint qualification (Definition 12.4) holds at x∗. This con-
dition implies that the KKT conditions (12.34) are satisfied for some vector of multipliers
λ∗.

(c) The second-order sufficient conditions (Theorem 12.6) hold at (x∗, λ∗).

We consider first an SQP method that uses exact second derivatives.

558 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

Theorem 18.4.
Suppose that Assumptions 18.2 hold. Then, if (x0, λ0) is sufficiently close to (x∗, λ∗), the

pairs (xk, λk) generated by Algorithm 18.1 converge quadratically to (x∗, λ∗).

The proof follows directly from Theorem 11.2, since we know that Algorithm 18.1 is
equivalent to Newton’s method applied to the nonlinear system F(x, λ) � 0, where F is
defined by (18.3).

We turn now to quasi-Newton variants of Algorithm 18.1, in which the Lagrangian
Hessian∇2

xxL(xk, λk) is replaced by a quasi-Newton approximation Bk . We discussed in Sec-
tion 18.3 algorithms that used approximations to the full Hessian, and also reduced-Hessian
methods that maintained approximations to the projected Hessian Z T

k ∇2
xxL(xk, λk)Zk . As

in the earlier discussion, we take Zk to be the n × (n − m) matrix whose columns span the
null space of Ak , assuming in addition that the columns of Zk are orthornormal; see (15.22).

If we multiply the first block row of the KKT system (18.9) by Zk , we obtain

Z T
k ∇2

xxLk pk � −Z T
k ∇ fk . (18.62)

This equation, together with the second block row Ak pk � −ck of (18.9), is sufficient to
determine fully the value of pk when xk and λk are not too far from their optimal values.
In other words, only the projection of the Hessian Z T

k ∇2
xxLk is significant; the remainder of

∇2
xxLk (its projection onto the range space of AT

k) does not play a role in determinining pk .
By multiplying (18.62) by Zk , and defining the following matrix Pk , which projects

onto the null space of Ak :

Pk � I − AT
k

[
Ak AT

k

]−1
Ak � Zk Z T

k ,

we can rewrite (18.62) equivalently as follows:

Pk∇2
xxLk pk � −Pk∇ fk .

The discussion above, together with Theorem 18.4, suggests that a quasi-Newton method
will be locally convergent if the quasi-Newton matrix Bk is chosen so that Pk Bk is a reasonable
approximation of Pk∇2

xxLk , and that it will be superlinearly convergent if Pk Bk approximates
Pk∇2

xxLk well. To make the second statement more precise, we present a result that can be
viewed as an extension of characterization of superlinear convergence (Theorem 3.6) to the
equality-constrained case. In the following discussion, ∇2

xxL∗ denotes ∇2
xxL(x∗, λ∗).

Theorem 18.5.
Suppose that Assumptions 18.2 hold and that the iterates xk generated by Algorithm 18.1

with quasi-Newton approximate Hessians Bk converge to x∗. Then xk converges superlinearly
if and only if the Hessian approximation Bk satisfies

lim
k→∞

‖Pk(Bk − ∇2
xxL∗)(xk+1 − xk)‖

‖xk+1 − xk‖ � 0. (18.63)

1 8 . 7 . C O N V E R G E N C E A N A L Y S I S 559

We can apply this result to the quasi-Newton updating schemes discussed earlier in
this chapter, beginning with the full BFGS approximation based on (18.13). To guarantee
that the BFGS approximation is always well defined, we make the (strong) assumption that
the Hessian of the Lagrangian is positive definite at the solution.

Theorem 18.6.
Suppose that Assumptions 18.2 hold. Assume also that∇2

xxL∗ and B0 are symmetric and
positive definite. If ‖x0− x∗‖ and ‖B0−∇2

xxL∗‖ are sufficiently small, the iterates xk generated
by Algorithm 18.1 with BFGS Hessian approximations Bk defined by (18.13) and (18.16) (with
rk � sk) satisfy the limit (18.63). Therefore, the iterates xk converge superlinearly to x∗.

For the damped BFGS updating strategy given in Procedure 18.2, we can show that the
rate of convergence is R-superlinear (not the usual Q-superlinear rate; see the Appendix).

We now consider reduced-Hessian SQP methods that update an approximation Mk

to Z T
k ∇2

xxLk Zk . From the definition of Pk , we see that Zk Mk Z T
k can be considered as an

approximation to the two-sided projection Pk∇2
xxLk Pk . Since reduced-Hessian methods do

not approximate the one-sided projection Pk∇2
xxLk , we cannot expect (18.63) to hold. For

these methods, we can state a condition for superlinear convergence by writing (18.63) as

lim
k→∞

[
Pk(Bk −∇2

xxL∗)Pk(xk+1 − xk)

‖xk+1 − xk‖
+ Pk(Bk −∇2

xxL∗)(I − Pk)(xk+1 − xk)

‖xk+1 − xk‖
]
� 0, (18.64)

and defining Bk � Zk Mk Z T
k . The following result shows that it is necessary only for the first

term in (18.64) to go to zero to obtain a weaker form of superlinear convergence, namely,
two-step superlinear convergence.

Theorem 18.7.
Suppose that Assumption 18.2(a) holds and that the matrices Bk are bounded. Assume

also that the iterates xk generated by Algorithm 18.1 with approximate Hessians Bk converge to
x∗, and that

lim
k→∞

‖Pk(Bk − ∇2
xxL∗)Pk(xk+1 − xk)‖

‖xk+1 − xk‖ � 0. (18.65)

Then the sequence {xk} converges to x∗ two-step superlinearly, that is,

lim
k→∞

‖xk+2 − x∗‖
‖xk − x∗‖ � 0.

In a reduced-Hessian method that uses BFGS updating, the iteration is xk+1 � xk +
Yk pY + Zk pZ, where pY and pZ are given by (18.19a), (18.23) (with (Z T

k ∇2
xxLk Zk) replaced

by Mk). The reduced-Hessian approximation Mk is updated by the BFGS formula using

560 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

the correction vectors (18.26), and the initial approximation M0 is symmetric and positive
definite. If we make the assumption that the null space bases Zk used to define the correction
vectors (18.26) vary smoothly, then we can apply Theorem 18.7 to show that xk converges
two-step superlinearly.

18.8 PERSPECTIVES AND SOFTWARE

SQP methods are most efficient if the number of active constraints is nearly as large as the
number of variables, that is, if the number of free variables is relatively small. They require
few evaluations of the functions, in comparison with augmented Lagrangian methods, and
can be more robust on badly scaled problems than the nonlinear interior-point methods
described in the next chapter. It is not known at present whether the IQP or EQP approach
will prove to be more effective for large problems. Current reasearch focuses on widening
the class of problems that can be solved with SQP and SLQP approaches.

Two established SQP software packages are SNOPT [128] and FILTERSQP [105]. The
former code follows a line search approach, while the latter implements a trust-region
strategy using a filter for step acceptance. The SLQP approach of Section 18.5 is implemented
in KNITRO/ACTIVE [49]. All three packages include mechanisms to ensure that the subproblems
are always feasible and to guard against rank-deficient constraint Jacobians. SNOPT uses the
penalty (or elastic) mode (18.12), which is invoked if the SQP subproblem is infeasible or if
the Lagrange multiplier estimates become very large in norm. FILTERSQP includes a feasibility
restoration phase that, in addition to promoting convergence, provides rapid identification
of convergence to infeasible points. KNITRO/ACTIVE implements a penalty method using the
update strategy of Algorithm 18.5.

There is no established implementation of the S�1QP approach, but prototype imple-
mentations have shown promise. The CONOPT [9] package implements a generalized reduced
gradient method as well as an SQP method.

Quasi-Newton approximations to the Hessian of the Lagrangian ∇2
xxLk are often

used in practice. BFGS updating is generally less effective for constrained problems than
in the unconstrained case because of the requirement of maintaining a positive definite
approximation to an underlying matrix that often does not have this property. Nevertheless,
the BFGS and limited-memory BFGS approximations implemented in SNOPT and KNITRO

perform adequately in practice. KNITRO also offers an SR1 option that may be more effective
than the BFGS option, but the question of how best to implement full quasi-Newton approx-
imations for constrained optimization requires further investigation. The RSQP package [13]
implements an SQP method that maintains a quasi-Newton approximation to the reduced
Hessian.

The Maratos effect, if left unattended, can significantly slow optimization algorithms
that use nonsmooth merit functions or filters. However, selective application of second-order
correction steps adequately resolves the difficulties in practice.

1 8 . 8 . P E R S P E C T I V E S A N D S O F T W A R E 561

Trust-region implementations of the gradient projection method include TRON [192]
and LANCELOT [72]. Both codes use a conjugate gradient iteration to perform the subspace
minimization and apply an incomplete Cholesky preconditioner. Gradient projection meth-
ods in which the Hessian approximation is defined by limited-memory BFGS updating are
implemented in LBFGS-B [322] and BLMVM [17]. The properties of limited-memory BFGS
matrices can be exploited to perform the projected gradient search and subpace minimiza-
tion efficiently. SPG [23] implements the gradient projection method using a nonmonotone
line search.

NOTES AND REFERENCES

SQP methods were first proposed in 1963 by Wilson [306] and were developed in
the 1970s by Garcia-Palomares and Mangasarian [117], Han [163, 164], and Powell [247,
250, 249], among others. Trust-region variants are studied by Vardi [295], Celis, Dennis,
and Tapia [56], and Byrd, Schnabel, and Shultz [55]. See Boggs and Tolle [33] and Gould,
Orban, and Toint [147] for literature surveys.

The SLQP approach was proposed by Fletcher and Sainz de la Maza [108] and was
further developed by Chin and Fletcher [59] and Byrd et al. [49]. The latter paper discusses
how to update the LP trust region and many other details of implementation. The technique
for updating the penalty parameter implemented in Algorithm 18.5 is discussed in [49, 47].
The S�1QP method was proposed by Fletcher; see [101] for a complete discussion of this
method.

Some analysis shows that several—but not all—of the good properties of BFGS updat-
ing are preserved by damped BFGS updating. Numerical experiments exposing the weakness
of the approach are reported by Powell [254]. Second-order correction strategies were pro-
posed by Coleman and Conn [65], Fletcher [100], Gabay [116], and Mayne and Polak [204].
The watchdog technique was proposed by Chamberlain et al. [57] and other nonmonotone
strategies are described by Bonnans et al. [36]. For a comprehensive discussion of second-
order correction and nonmonotone techniques, see the book by Conn, Gould, and Toint
[74].

Two filter SQP algorithms are described by Fletcher and Leyffer [105] and Fletcher,
Leyffer, and Toint [106]. It is not yet known whether the filter strategy has advantages
over merit functions. Both approaches are undergoing development and improved imple-
mentations can be expected in the future. Theorem 18.3 is proved by Powell [252] and
Theorem 18.5 by Boggs, Tolle, and Wang [34].

✐ E X E R C I S E S

✐ 18.1 Show that in the quadratic program (18.7) we can replace the linear term∇ f T
k p

by ∇xL(xk, λk)T p without changing the solution.

562 C H A P T E R 1 8 . S E Q U E N T I A L Q U A D R A T I C P R O G R A M M I N G

✐ 18.2 Prove Theorem 18.4.

✐ 18.3 Write a program that implements Algorithm 18.1. Use it to solve the problem

min ex1x2x3x4x5 − 1
2 (x3

1 + x3
2 + 1)2 (18.66)

subject to x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 � 0, (18.67)

x2x3 − 5x4x5 � 0, (18.68)

x3
1 + x3

2 + 1 � 0. (18.69)

Use the starting point x0 � (−1.71, 1.59, 1.82,−0.763,−0.763)T . The solution is x∗ �
(−1.8, 1.7, 1.9,−0.8,−0.8)T .

✐ 18.4 Show that the damped BFGS updating satisfies (18.17).

✐ 18.5 Consider the constraint x2
1 + x2

2 � 1. Write the linearized constraints (18.7b) at
the following points: (0, 0)T , (0, 1)T , (0.1, 0.02)T , −(0.1, 0.02)T .

✐ 18.6 Prove Theorem 18.2 for the case in which the merit function is given by
φ(x;µ) � f (x)+µ‖c(x)‖q , where q > 0. Use this lemma to show that the condition that
ensures descent is given by µ > ‖λk+1‖r , where r > 0 satisfies r−1 + q−1 � 1.

✐ 18.7 Write a program that implements the reduced-Hessian method given by (18.18),
(18.19a), (18.21), (18.23). Use your program to solve the problem given in Exercise 18.3.

✐ 18.8 Show that the constraints (18.50b)–(18.50e) are always consistent.

✐ 18.9 Show that the feasibility problem (18.45a)–(18.45b) always has a solution vk

lying in the range space of AT
k . Hint: First show that if the trust-region constraint (18.45b)

is active, vk lies in the range space of AT
k . Next, show that if the trust region is inactive, the

minimum-norm solution of (18.45a) lies in the range space of AT
k .

This is page 563
Printer: Opaque this

C H A P T E R19
Interior-Point
Methods for
Nonlinear
Programming

Interior-point (or barrier) methods have proved to be as successful for nonlinear optimiza-
tion as for linear programming, and together with active-set SQP methods, they are currently
considered the most powerful algorithms for large-scale nonlinear programming. Some of
the key ideas, such as primal-dual steps, carry over directly from the linear programming
case, but several important new challenges arise. These include the treatment of noncon-
vexity, the strategy for updating the barrier parameter in the presence of nonlinearities, and
the need to ensure progress toward the solution. In this chapter we describe two classes of
interior-point methods that have proved effective in practice.

564 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

The methods in the first class can be viewed as direct extensions of interior-point
methods for linear and quadratic programming. They use line searches to enforce conver-
gence and employ direct linear algebra (that is, matrix factorizations) to compute steps. The
methods in the second class use a quadratic model to define the step and incorporate a trust-
region constraint to provide stability. These two approaches, which coincide asymptotically,
have similarities with line search and trust-region SQP methods.

Barrier methods for nonlinear optimization were developed in the 1960s but fell out of
favor for almost two decades. The success of interior-point methods for linear programming
stimulated renewed interest in them for the nonlinear case. By the late 1990s, a new genera-
tion of methods and software for nonlinear programming had emerged. Numerical experi-
ence indicates that interior-point methods are often faster than active-set SQP methods on
large problems, particularly when the number of free variables is large. They may not yet be
as robust, but significant advances are still being made in their design and implementation.
The terms “interior-point methods” and “barrier methods” are now used interchangeably.

In Chapters 14 and 16 we discussed interior-point methods for linear and quadratic
programming. It is not essential that the reader study those chapters before reading this one,
although doing so will give a better perspective. The first part of this chapter assumes famil-
iarity primarily with the KKT conditions and Newton’s method, and the second part of the
chapter relies on concepts from sequential quadratic programming presented in Chapter 18.

The problem under consideration in this chapter is written as follows:

min
x,s

f (x) (19.1a)

subject to cE(x) � 0, (19.1b)

cI(x)− s � 0, (19.1c)

s ≥ 0. (19.1d)

The vector cI(x) is formed from the scalar functions ci (x), i ∈ I , and similarly for cE(x).
Note that we have transformed the inequalities cI(x) ≥ 0 into equalities by the introduction
of a vector s of slack variables. We use l to denote the number of equality constraints (that
is, the dimension of the vector cE) and m to denote the number of inequality constraints
(the dimension of cI).

19.1 TWO INTERPRETATIONS

Interior-point methods can be seen as continuation methods or as barrier methods. We
discuss both derivations, starting with the continuation approach.

The KKT conditions (12.1) for the nonlinear program (19.1) can be written as

∇ f (x)− AE
T (x)y − AI

T (x)z � 0, (19.2a)

Sz − µe � 0, (19.2b)

1 9 . 1 . T W O I N T E R P R E T A T I O N S 565

cE(x) � 0, (19.2c)

cI(x)− s � 0, (19.2d)

with µ � 0, together with

s ≥ 0, z ≥ 0. (19.3)

Here AE(x) and AI(x) are the Jacobian matrices of the functions cE and cI, respectively, and
y and z are their Lagrange multipliers. We define S and Z to be the diagonal matrices whose
diagonal entries are given by the vectors s and z, respectively, and let e � (1, 1, . . . , 1)T .

Equation (19.2b), with µ � 0, and the bounds (19.3) introduce into the problem the
combinatorial aspect of determining the optimal active set, illustrated in Example 15.1. We
circumvent this difficulty by letting µ be strictly positive, thus forcing the variables s and z to
take positive values. The homotopy (or continuation) approach consists of (approximately)
solving the perturbed KKT conditions (19.2) for a sequence of positive parameters {µk} that
converges to zero, while maintaining s, z > 0. The hope is that, in the limit, we will obtain
a point that satisfies the KKT conditions for the nonlinear program (19.1). Furthermore,
by requiring the iterates to decrease a merit function (or to be acceptable to a filter), the
iteration is likely to converge to a minimizer, not simply a KKT point.

The homotopy approach is justified locally. In a neighborhood of a solution
(x∗, s∗, y∗, z∗) that satisfies the linear independence constraint qualification (LICQ) (Defi-
nition 12.4), the strict complementarity condition (Definition 12.5), and the second-order
sufficient conditions (Theorem 12.6), we have that for all sufficiently small positive
values of µ, the system (19.2) has a locally unique solution, which we denote by
(x(µ), s(µ), y(µ), z(µ)). The trajectory described by these points is called the primal-dual
central path, and it converges to (x∗, s∗, y∗, z∗) as µ → 0.

The second derivation of interior-point methods associates with (19.1) the barrier
problem

min
x,s

f (x)− µ

m∑
i�1

log si (19.4a)

subject to cE(x) � 0, (19.4b)

cI(x)− s � 0, (19.4c)

where µ is a positive parameter and log(·) denotes the natural logarithm function. One
need not include the inequality s ≥ 0 in (19.4) because minimization of the barrier term
−µ

∑m
i�1 log si in (19.4a) prevents the components of s from becoming too close to zero.

(Recall that (− log t) →∞ as t ↓ 0.) Problem (19.4) also avoids the combinatorial aspect
of nonlinear programs, but its solution does not coincide with that of (19.1) for µ > 0. The
barrier approach consists of finding (approximate) solutions of the barrier problem (19.4)
for a sequence of positive barrier parameters {µk} that converges to zero.

566 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

To compare the homotopy and barrier approaches, we write the KKT conditions for
(19.4) as follows:

∇ f (x)− AE
T (x)y − AI

T (x)z � 0, (19.5a)

−µS−1e + z � 0, (19.5b)

cE(x) � 0, (19.5c)

cI(x)− s � 0. (19.5d)

Note that they differ from (19.2) only in the second equation, which becomes quite nonlinear
near the solution as s → 0. It is advantageous for Newton’s method to transform the rational
equation (19.5b) into a quadratic equation. We do so by multiplying this equation by S, a
procedure that does not change the solution of (19.5) because the diagonal elements of S
are positive. After this transformation, the KKT conditions for the barrier problem coincide
with the perturbed KKT system (19.2).

The term “interior point” derives from the fact that early barrier methods [98] did
not use slacks and assumed that the initial point x0 is feasible with respect to the inequality
constraints ci (x) ≥ 0, i ∈ I . These methods used the barrier function

f (x)− µ
∑
i∈I

log ci (x)

to prevent the iterates from leaving the feasible region defined by the inequalities. (We
discuss this barrier function further in Section 19.6.) Most modern interior-point methods
are infeasible (they can start from any initial point x0) and remain interior only with respect
to the constraints s ≥ 0, z ≥ 0. However, they can be designed so that once they generate a
feasible iterate, all subsequent iterates remain feasible with respect to the inequalities.

In the next sections we will see that the homotopy and barrier interpretations are both
useful. The homotopy view gives rise to the definition of the primal-dual direction, whereas
the barrier view is vital in the design of globally convergent iterations.

19.2 A BASIC INTERIOR-POINT ALGORITHM

Applying Newton’s method to the nonlinear system (19.2), in the variables x, s, y, z, we
obtain⎡
⎢⎢⎢⎢⎣
∇2

xxL 0 −AE
T (x) −AI

T (x)

0 Z 0 S

AE(x) 0 0 0

AI(x) −I 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

px

ps

py

pz

⎤
⎥⎥⎥⎥⎦ � −

⎡
⎢⎢⎢⎢⎣
∇ f (x)− AE

T (x)y − AI
T (x)z

Sz − µe

cE(x)

cI(x)− s

⎤
⎥⎥⎥⎥⎦ ,

(19.6)

1 9 . 2 . A B A S I C I N T E R I O R - P O I N T A L G O R I T H M 567

where L denotes the Lagrangian for (19.1a)–(19.1c):

L(x, s, y, z) � f (x)− yT cE(x)− zT (cI(x)− s). (19.7)

The system (19.6) is called the primal-dual system (in contrast with the primal system
discussed in Section 19.3). After the step p � (px , ps, py, pz) has been determined, we
compute the new iterate (x+, s+, y+, z+) as

x+ � x + αmax

s px , s+ � s + αmax

s ps, (19.8a)

y+ � y + αmax

z py, z+ � z + αmax

z pz, (19.8b)

where

αmax

s � max{α ∈ (0, 1] : s + αps ≥ (1− τ)s}, (19.9a)

αmax

z � max{α ∈ (0, 1] : z + αpz ≥ (1− τ)z}, (19.9b)

with τ ∈ (0, 1). (A typical value of τ is 0.995.) The condition (19.9), called the fraction to
the boundary rule, prevents the variables s and z from approaching their lower bounds of 0
too quickly.

This simple iteration provides the basis of modern interior-point methods, though
various modifications are needed to cope with nonconvexities and nonlinearities. The other
major ingredient is the procedure for choosing the sequence of parameters {µk}, which
from now on we will call the barrier parameters. In the approach studied by Fiacco and
McCormick [98], the barrier parameter µ is held fixed for a series of iterations until the
KKT conditions (19.2) are satisfied to some accuracy. An alternative approach is to update
the barrier parameter at each iteration. Both approaches have their merits and are discussed
in Section 19.3.

The primal-dual matrix in (19.6) remains nonsingular as the iteration converges to a
solution that satisfies the second-order sufficiency conditions and strict complementarity.
More specifically, if x∗ is a solution point for which strict complementarity holds, then
for every index i either si or zi remains bounded away from zero as the iterates approach
x∗, ensuring that the second block row of the primal-dual matrix (19.6) has full row rank.
Therefore, the interior-point approach does not, in itself, give rise to ill conditioning or
singularity. This fact allows us to establish a fast (superlinear) rate of convergence; see
Section 19.8.

We summarize the discussion by describing a concrete implementation of this basic
interior-point method. We use the following error function, which is based on the perturbed
KKT system (19.2):

E(x, s, y, z;µ) � max
{‖∇ f (x)− AE(x)T y − AI(x)T z‖, ‖Sz − µe‖,

‖cE(x)‖, ‖cI(x)− s‖} , (19.10)

for some vector norm ‖ · ‖.

568 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

Algorithm 19.1 (Basic Interior-Point Algorithm).
Choose x0 and s0 > 0, and compute initial values for the multipliers y0 and z0 > 0.

Select an initial barrier parameter µ0 > 0 and parameters σ, τ ∈ (0, 1). Set k ← 0.

repeat until a stopping test for the nonlinear program (19.1) is satisfied
repeat until E(xk, sk, yk, zk;µk) ≤ µk

Solve (19.6) to obtain the search direction p � (px , ps, py, pz);
Compute αmax

s , αmax
z using (19.9);

Compute (xk+1, sk+1, yk+1, zk+1) using (19.8);
Set µk+1 ← µk and k ← k + 1;

end
Choose µk ∈ (0, σµk);

end

An algorithm that updates the barrier parameter µk at every iteration is easily obtained
from Algorithm 19.1 by removing the requirement that the KKT conditions be satisfied for
each µk (the inner “repeat” loop) and by using a dynamic rule for updating µk in the
penultimate line.

The following theorem provides a theoretical foundation for interior-point methods
that compute only approximate solutions of the barrier problem.

Theorem 19.1.
Suppose that Algorithm 19.1 generates an infinite sequence of iterates {xk} and that

{µk} → 0 (that is, that the algorithm does not loop infinitely in the inner “repeat” statement).
Suppose that f and c are continuously differentiable functions. Then all limit points x̂ of {xk}
are feasible. Furthermore, if any limit point x̂ of {xk} satisfies the linear independence constraint
qualification (LICQ), then the first-order optimality conditions of the problem (19.1) hold at x̂ .

PROOF. For simplicity, we prove the result for the case in which the nonlinear program
(19.1) contains only inequality constraints, leaving the extension of the result as an exercise.
For ease of notation, we denote the inequality constraints cI by c. Let x̂ be a limit point of the
sequence {xk}, and let {xkl } be a convergent subsequence, namely, {xkl } → x̂ . Since µk → 0,
the error E given by (19.10) converges to zero, so we have (ckl − skl) → 0. By continuity of

c, this fact implies that ĉ
def� c(x̂) ≥ 0 (that is, x̂ is feasible) and skl → ŝ � ĉ.

Now suppose that the linear independence constraint qualification holds at x̂ , and
consider the set of active indices

A � {i : ĉi � 0}.

1 9 . 3 . A L G O R I T H M I C D E V E L O P M E N T 569

For i 	∈ A, we have ĉi > 0 and ŝi > 0, and thus by the complementarity condition (19.2b),
we have that [zkl]i → 0. From this fact and ∇ fkl − AT

kl
zkl → 0, we deduce that

∇ fkl −
∑
i∈A

[zkl]i∇ci (xkl) → 0. (19.11)

By the constraint qualification hypothesis, the vectors {∇ ĉi : i ∈ A} are linearly indepen-
dent. Hence, by (19.11) and continuity of ∇ f (·) and ∇c(i)(·), i ∈ A, the positive sequence
{zkl } converges to some value ẑ ≥ 0. Taking the limit in (19.11), we have that

∇ f (x̂) �
∑
i∈A

ẑi∇ci (x̂).

We also have that ĉT ẑ � 0, completing the proof. �

Practical interior-point algorithms fall into two categories. The first builds on Algo-
rithm 19.1, adding a line search and features to control the rate of decrease in the slacks s and
multipliers z, and introducing modifications in the primal-dual sytem when negative curva-
ture is encountered. The second category of algorithms, presented in Section 19.5, computes
steps by minimizing a quadratic model of (19.4), subject to a trust-region constraint. The
two approaches share many features described in the next section.

19.3 ALGORITHMIC DEVELOPMENT

We now discuss a series of modifications and extensions of Algorithm 19.1 that enable it to
solve nonconvex nonlinear problems, starting from any initial estimate.

Often, the primal-dual system (19.6) is rewritten in the symmetric form

⎡
⎢⎢⎢⎢⎣
∇2

xxL 0 AE
T (x) AI

T (x)

0 � 0 −I

AE(x) 0 0 0

AI(x) −I 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

px

ps

−py

−pz

⎤
⎥⎥⎥⎥⎦ � −

⎡
⎢⎢⎢⎢⎣
∇ f (x)− AE

T (x)y − AI
T (x)z

z − µS−1e

cE(x)

cI(x)− s

⎤
⎥⎥⎥⎥⎦ ,

(19.12)

where

� � S−1 Z . (19.13)

This formulation permits the use of a symmetric linear equations solver, which reduces the
computational work of each iteration.

570 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

PRIMAL VS. PRIMAL-DUAL SYSTEM

If we apply Newton’s method directly to the optimality conditions (19.5) of the barrier
problem (instead of transforming to (19.5b) first) and then symmetrize the iteration matrix,
we obtain the system (19.12) but with � given by

� � µS−2. (19.14)

This is often called the primal system, in contrast with the primal-dual system arising from
(19.13). (This nomenclature owes more to the historical development of interior-point
methods than to the concept of primal-dual iterations.) Whereas in the primal-dual choice
(19.13) the vector z can be seen as a general multiplier estimate, the primal term (19.14) is
obtained by making the specific selection Z � µS−1; we return to this choice of multipliers
in Section 19.6.

Even though the systems (19.2) and (19.5) are equivalent, Newton’s method applied
to them will generally produce different iterates, and there are reasons for preferring the
primal-dual system. Note that (19.2b) has the advantage that its derivatives are bounded as
any slack variables approach zero; such is not the case with (19.5b). Moreover, analysis of the
primal step as well as computational experience has shown that, under some circumstances,
the primal step (19.12), (19.14) tends to produce poor steps that violate the bounds s > 0
and z > 0 significantly, resulting in slow progress; see Section 19.6.

SOLVING THE PRIMAL-DUAL SYSTEM

Apart from the cost of evaluating the problem functions and their derivatives, the
work of the interior-point iteration is dominated by the solution of the primal-dual system
(19.12), (19.13). An efficient linear solver, using either sparse factorization or iterative
techniques, is therefore essential for fast solution of large problems.

The symmetric matrix in (19.12) has the familiar form of a KKT matrix (cf. (16.7),
(18.6)), and the linear system can be solved by the approaches described in Chapter 16. We
can first reduce the system by eliminating ps using the second equation in (19.6), giving

⎡
⎢⎣

∇2
xxL AE

T (x) AI
T (x)

AE(x) 0 0

AI(x) 0 −�−1

⎤
⎥⎦
⎡
⎢⎣

px

−py

−pz

⎤
⎥⎦ � −

⎡
⎢⎣
∇ f (x)− AE

T (x)y − AI
T (x)z

cE(x)

cI(x)− µZ−1e

⎤
⎥⎦ .

(19.15)
This system can be factored by using a symmetric indefinite factorization; see (16.12). If we
denote the coefficient matrix in (19.15) by K , this factorization computes PT K P � L BLT ,
where L is lower triangular and B is block diagonal, with blocks of size 1 × 1 or 2 × 2. P
is a matrix of row and column permutations that seeks a compromise between the goals
of preserving sparsity and ensuring numerical stability; see (3.51) and the discussion that
follows.

1 9 . 3 . A L G O R I T H M I C D E V E L O P M E N T 571

The system (19.15) can be reduced further by eliminating pz using the last equation,
to obtain the condensed coefficient matrix

[
∇2

xxL+ AI
T � AI AE

T (x)

AE(x) 0

]
, (19.16)

which is much smaller than (19.12) when the number of inequality constraints is large.
Although significant fill-in can arise from the term AI

T � AI, it is tolerable in many applica-
tions. A particularly favorable case, in which AI

T � AI is diagonal, arises when the inequality
constraints are simple bounds.

The primal-dual system in any of the symmetric forms (19.12), (19.15), (19.16)
is ill conditioned because, by (19.13), some of the elements of � diverge to ∞, while
others converge to zero as µ → 0. Nevertheless, because of the special form in which this
ill conditioning arises, the direction computed by a stable direct factorization method is
usually accurate. Damaging errors result only when the slacks s or multipliers z become
very close to zero (or when the Hessian ∇2

xxL or the Jacobian matrix AE is almost rank
deficient). For this reason, direct factorization techniques are considered the most reliable
techniques for computing steps in interior-point methods.

Iterative linear algebra techniques can also be used for the step computation. Ill con-
ditioning is a grave concern in this context, and preconditioners that cluster the eigenvalues
of � must be used. Fortunately, such preconditioners are easy to construct. For example,
let us introduce the change of variables p̃s � S−1 ps in the system (19.12), and multiply
the second equation in (19.12) by S, transforming the term � into S�S. As µ → 0 (and
assuming that SZ ≈ µI) we have from (19.13) that all the elements of S�S cluster around
µI . Other scalings can be used as well. The change of variables p̃s � �1/2 ps provides the
perfect preconditioner, while p̃s � √

µS−1 ps transforms � to S�S/µ, which converges to
I as µ → 0.

We can apply an iterative method to one of the symmetric indefinite systems
(19.12), (19.15), or (19.16). The conjugate gradient method is not appropriate (except
as explained below) because it is designed for positive definite systems, but we can use
GMRES, QMR, or LSQR (see [136]). In addition to employing preconditioning that re-
moves the ill conditioning caused by the barrier approach, as discussed above, we need
to deal with possible ill conditioning caused by the Hessian ∇2

xxL or the Jacobian matri-
ces AE and AI. General-purpose preconditioners are difficult to find in this context, and
the success of an iterative method hinges on the use of problem-specific or structured
preconditioners.

An effective alternative is to use a null-space approach to solve the primal-dual system
and apply the CG method in the (positive definite) reduced space. As explained in Sec-
tion 16.3, we can do this by applying the projected CG iteration of Algorithm 16.2 using a
so-called constraint preconditioner. In the context of the system (19.12) the preconditioner

572 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

has the form

⎡
⎢⎢⎢⎢⎣

G 0 AE
T (x) AI

T (x)

0 T 0 −I

AE(x) 0 0 0

AI(x) −I 0 0

⎤
⎥⎥⎥⎥⎦ , (19.17)

where G is a sparse matrix that is positive definite on the null space of the constraints and T
is a diagonal matrix that equals or approximates �. This preconditioner keeps the Jacobian
information of AE and AI intact and thereby removes any ill conditioning present in these
matrices.

UPDATING THE BARRIER PARAMETER

The sequence of barrier parameters {µk} must converge to zero so that, in the limit,
we recover the solution of the nonlinear programming problem (19.1). If µk is decreased
too slowly, a large number of iterations will be required for convergence; but if it is decreased
too quickly, some of the slacks s or multipliers z may approach zero prematurely, slowing
progress of the iteration. We now describe several techniques for updating µk that have
proved to be effective in practice.

The strategy implemented in Algorithm 19.1, which we call the Fiacco–McCormick
approach, fixes the barrier parameter until the perturbed KKT conditions (19.2) are satisfied
to some accuracy. Then the barrier parameter is decreased by the rule

µk+1 � σkµk, with σk ∈ (0, 1). (19.18)

Some early implementations of interior-point methods chose σk to be a constant (for exam-
ple, σk � 0.2). It is, however, preferable to let σk take on two or more values (for example, 0.2
and 0.1), choosing smaller values when the most recent iterations make significant progress
toward the solution. Furthermore, by letting σk → 0 near the solution, and letting the
parameter τ in (19.9) converge to 1, a superlinear rate of convergence can be obtained.

The Fiacco–McCormick approach works well on many problems, but it can be sensitive
to the choice of the initial point, the initial barrier parameter value, and the scaling of the
problem.

Adaptive strategies for updating the barrier parameter are more robust in difficult
situations. These strategies, unlike the Fiacco–McCormick approach, vary µ at every it-
eration depending on the progress of the algorithm. Most such strategies are based on
complementarity, as in the linear programming case (see Framework 14.1), and have the
form

µk+1 � σk
sT

k zk

m
, (19.19)

1 9 . 3 . A L G O R I T H M I C D E V E L O P M E N T 573

which allows µk to reflect the scale of the problem. One choice of σk , implemented in the
LOQO package [294], is based on the deviation of the smallest complementarity product
[sk]i [zk]i from the average:

σk � 0.1 min

(
0.05

1− ξk

ξk
, 2

)3

, where ξk � mini [sk]i [zk]i

(sk)T zk/m
. (19.20)

Here [sk]i denotes the i th component of the iterate sk , and similarly for [zk]i . When ξk ≈ 1
(all the individual products are near to their average), the barrier parameter is decreased
aggressively.

Predictor or probing strategies (see Section 14.2) can also be used to determine the
parameter σk in (19.19). We calculate a predictor (affine scaling) direction

(�xaff ,�saff ,�yaff ,�zaff)

by setting µ � 0 in (19.12). We probe this direction by finding αaff
p and αaff

d to be the
longest step lengths that can be taken along the affine scaling direction before violating
the nonnegativity conditions (s, z) ≥ 0. Explicit formulas for these step lengths are given
by (19.9) with τ � 1. We then define µaff to be the value of complementarity along the
(shortened) affine scaling step, that is,

µaff � (sk + αaff
s �saff)T (zk + αaff

z �zaff)/m, (19.21)

and define σk as follows:

σk �
(

µaff

sT
k zk/m

)3

. (19.22)

This heuristic choice of σk was proposed for linear programming problems (see (14.34))
and also works well for nonlinear programs.

HANDLING NONCONVEXITY AND SINGULARITY

The direction defined by the primal-dual system (19.12) is not always productive
because it seeks to locate only KKT points; it can move toward a maximizer or other
stationary points. In Chapter 18 we have seen that the Newton step (18.9) for the equality-
constrained problem (18.1) can be guaranteed to be a descent direction for a large class of
merit functions—and to be a productive direction for a filter—if the Hessian W is positive
definite on the tangent space of the constraints. The reason is that, in this case, the step
can be interpreted as the minimization of a convex model in the reduced space obtained by
eliminating the linearized constraints.

574 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

For the primal-dual system (19.12), the step p is a descent direction if the matrix

[
∇2

xxL 0

0 �

]
(19.23)

is positive definite on the null space of the constraint matrix

[
AE(x) 0

AI(x) −I

]
.

Lemma 16.3 states that this positive definiteness condition holds if the inertia of the primal-
dual matrix in (19.12) is given by

(n + m, l + m, 0), (19.24)

in other words, if this matrix has exactly n + m positive, l + m negative, and no zero
eigenvalues. (Recall that l and m denote the number of equality and inequality constraints,
respectively.) As discussed in Section 3.4, the inertia can be obtained from the symmetric-
indefinite factorization of (19.12).

If the primal-dual matrix does not have the desired inertia, we can modify it as
follows. Note that the diagonal matrix � is positive definite by construction but ∇2

xxL can
be indefinite. Therefore, we can replace the latter matrix by ∇2

xxL + δ I , where δ > 0 is
sufficiently large to ensure that the inertia is given by (19.24). The size of this modification
is not known beforehand, but we can try successively larger values of δ until the desired
inertia is obtained.

We must also guard against singularity of the primal-dual matrix caused by the rank
deficiency of AE (the matrix [AI − I] always has full rank). We do so by including a
regularization parameter γ ≥ 0, in addition to the modification term δ I , and work with
the modified primal-dual matrix

⎡
⎢⎢⎢⎢⎣
∇2

xxL+ δ I 0 AE(x)T AI(x)T

0 � 0 −I

AE(x) 0 −γ I 0

AI(x) −I 0 0

⎤
⎥⎥⎥⎥⎦ . (19.25)

A procedure for selecting γ and δ is given in Algorithm B.1 in Appendix B. It is invoked at
every iteration of the interior-point method to enforce the inertia condition (19.24) and to
guarantee nonsingularity. Other matrix modifications to ensure positive definiteness have
been discussed in Chapter 3 in the context of unconstrained minimization.

1 9 . 3 . A L G O R I T H M I C D E V E L O P M E N T 575

STEP ACCEPTANCE: MERIT FUNCTIONS AND FILTERS

The role of the merit function or filter is to determine whether a step is productive
and should be accepted. Since interior-point methods can be seen as methods for solv-
ing the barrier problem (19.4), it is appropriate to define the merit function φ or filter
in terms of barrier functions. We may use, for example, an exact merit function of the
form

φν(x, s) � f (x)− µ

m∑
i�1

log si + ν‖cE(x)‖ + ν‖cI(x)− s‖, (19.26)

where the norm is chosen, say, to be the �1 or the �2 norm (unsquared). The penalty
parameter ν > 0 can be updated by using the strategies described in Chapter 18.

In a line search method, after the step p has been computed and the maximum step
lengths (19.9) have been determined, we perform a backtracking line search that computes
the step lengths

αs ∈ (0, αmax

s], αz ∈ (0, αmax

z], (19.27)

providing sufficient decrease of the merit function or ensuring acceptability by the filter.
The new iterate is then defined as

x+ � x + αs px , s+ � s + αs ps, (19.28a)

y+ � y + αz py, z+ � z + αz pz . (19.28b)

When defining a filter (see Section 15.4) the pairs of the filter are formed, on the one
hand, by the values of the barrier function f (x)−µ

∑m
i�1 log si and, on the other hand, by

the constraint violations ‖(cE(x), cI(x)−s)‖. A step will be accepted if it is not dominated by
any element in the filter. Under certain circumstances, if the step is not accepted by the filter,
instead of reducing the step length αs in (19.8a), a feasibility restoration phase is invoked;
see the Notes and References at the end of the chapter.

QUASI-NEWTON APPROXIMATIONS

A quasi-Newton version of the primal-dual step is obtained by replacing ∇2
xxL in

(19.12) by a quasi-Newton approximation B. We can use the BFGS (6.19) or SR1 (6.24)
update formulas described in Chapter 6 to define B, or we can follow a limited-memory BFGS
approach (see Chapter 7). It is important to approximate the Hessian of the Lagrangian of the
nonlinear program, not the Hessian of the barrier function, which is highly ill conditioned
and changes rapidly.

The correction pairs used by the quasi-Newton updating formula are denoted here by
(�x,�l), replacing the notation (s, y) of Chapter 6. After computing a step from (x, s, y, z)

576 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

to (x+, s+, y+, z+), we define

�l � ∇xL(x+, s+, y+, z+)−∇xL(x, s+, y+, z+),

�x � x+ − x .

To ensure that the BFGS method generates a positive definite matrix, one can skip
or damp the update; see (18.14) and (18.15). SR1 updating must be safeguarded to avoid
unboundedness, as discussed in Section 6.2, and may also need to be modified so that the
inertia of the primal-dual matrix is given by (19.24). This modification can be performed
by means of Algorithm B.1.

The quasi-Newton matrices B generated in this manner are dense n× n matrices. For
large problems, limited-memory updating is desirable. One option is to implement a limited-
memory BFGS method by using the compact representations described in Section 7.2. Here
B has the form

B � ξ I + W MW T , (19.29)

where ξ > 0 is a scaling factor, W is an n × 2m̂ matrix, M is a 2m̂ × 2m̂ symmet-
ric and nonsingular matrix, and m̂ denotes the number of correction pairs saved in the
limited-memory updating procedure. The matrices W and M are formed by using the vec-
tors {�lk} and {�xk} accumulated in the last m̂ iterations. Since the limited-memory matrix
B is positive definite, and assuming AE has full rank, the primal-dual matrix is nonsingular,
and we can compute the solution to (19.12) by inverting the coefficient matrix using the
Sherman–Morrison–Woodbury formula (see Exercise 19.14).

FEASIBLE INTERIOR-POINT METHODS

In many applications, it is desirable for all of the iterates generated by an optimization
algorithm to be feasible with respect to some or all of the inequality constraints. For example,
the objective function may be defined only when some of the constraints are satisfied, making
this feature essential.

Interior-point methods provide a natural framework for deriving feasible algorithms.
If the current iterate x satisfies cI(x) > 0, then it is easy to adapt the primal-dual iteration
(19.12) so that feasibility is preserved. After computing the step p, we let x+ � x + px ,
redefine the slacks as

s+ ← cI(x+), (19.30)

and test whether the point (x+, s+) is acceptable for the merit function φ. If so, we define
this point to be the new iterate; otherwise we reject the step p and compute a new, shorter
trial step. In a line search algorithm we backtrack, and in a trust-region method we compute
a new step with a reduced trust-region bound. This strategy is justified by the fact that if at
a trial point we have that ci (x+) ≤ 0 for some inequality constraint, the value of the merit

1 9 . 4 . A L I N E S E A R C H I N T E R I O R - P O I N T M E T H O D 577

function is +∞, and we reject the trial point. We will also reject steps x + px that are too
close to the boundary of the feasible region because such steps increase the barrier term
−µ

∑
i∈I log(si) in the merit function (19.26).

Making the substitution (19.30) has the effect of replacing log(si) with log(ci (x)) in
the merit function, a technique reminiscent of the classical primal log-barrier approach
discussed in Section 19.6.

19.4 A LINE SEARCH INTERIOR-POINT METHOD

We now give a more detailed description of a line search interior-point method. We denote
by Dφ(x, s; p) the directional derivative of the merit function φν at (x, s) in the direction
p. The stopping conditions are based on the error function (19.10).

Algorithm 19.2 (Line Search Interior-Point Algorithm).
Choose x0 and s0 > 0, and compute initial values for the multipliers y0 and z0 > 0.

If a quasi-Newton approach is used, choose an n× n symmetric and positive definite initial
matrix B0. Select an initial barrier parameter µ > 0, parameters η, σ ∈ (0, 1), and tolerances
εµ and εTOL . Set k ← 0.

repeat until E(xk, sk, yk, zk; 0) ≤ εTOL

repeat until E(xk, sk, yk, zk;µ) ≤ εµ

Compute the primal-dual direction p � (px , ps, py, pz) from
(19.12), where the coefficient matrix is modified as in
(19.25), if necessary;

Compute αmax
s , αmax

z using (19.9); Set pw � (px , ps);
Compute step lengths αs, αz satisfying both (19.27) and
φν(xk + αs px , sk + αs ps) ≤ φν(xk, sk)+ ηαs Dφν(xk, sk; pw);

Compute (xk+1, sk+1, yk+1, zk+1) using (19.28);
if a quasi-Newton approach is used

update the approximation Bk ;
Set k ← k + 1;

end
Set µ ← σµ and update εµ;

end

The barrier tolerance can be defined, for example, as εµ � µ, as in Algorithm 19.1. An
adaptive strategy that updates the barrier parameter µ at every step is easily implemented
in this framework. If the merit function can cause the Maratos effect (see Section 15.4),
a second-order correction or a nonmonotone strategy should be implemented. An al-
ternative to using a merit function is to employ a filter mechanism to perform the line
search.

578 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

We will see in Section 19.7 that Algorithm 19.2 must be safeguarded to ensure global
convergence.

19.5 A TRUST-REGION INTERIOR-POINT METHOD

We now consider an interior-point method that uses trust regions to promote convergence.
As in the unconstrained case, the trust-region formulation allows great freedom in the
choice of the Hessian and provides a mechanism for coping with Jacobian and Hessian
singularities. The price to pay for this flexibility is a more complex iteration than in the line
search approach.

The interior-point method described below is asymptotically equivalent to the line
search method discussed in Section 19.4, but differs significantly in two respects. First, it
is not fully a primal-dual method in the sense that it first computes a step in the variables
(x, s) and then updates the estimates for the multipliers, as opposed to the approach of
Algorithm 19.1, in which primal and dual variables are computed simultaneously. Second,
the trust-region method uses a scaling of the variables that discourages moves toward the
boundary of the feasible region. This causes the algorithm to generate steps that can be
different from, and enjoy more favorable convergence properties than, those produced by a
line search method.

We first describe a trust-region algorithm for finding approximate solutions of a fixed
barrier problem. We then present a complete interior-point method in which the barrier
parameter is driven to zero.

AN ALGORITHM FOR SOLVING THE BARRIER PROBLEM

The barrier problem (19.4) is an equality-constrained optimization problem and
can be solved by using a sequential quadratic programming method with trust regions.
A straightforward application of SQP techniques to the barrier problem leads, however, to
inefficient steps that tend to violate the positivity of the slack variables and are frequently cut
short by the trust-region constraint. To overcome this problem, we design an SQP method
tailored to the structure of barrier problems.

At the iterate (x, s), and for a given barrier parameter µ, we first compute Lagrange
multiplier estimates (y, z) and then compute a step p � (px , ps) that approximately solves
the subproblem

min
px ,ps

∇ f T px + 1

2
pT

x ∇2
xxLpx − µeT S−1 ps + 1

2
pT

s �ps (19.31a)

subject to AE(x)px + cE(x) � rE, (19.31b)

AI(x)px − ps + (cI(x)− s) � rI, (19.31c)

‖(px , S−1 ps)‖2 ≤ �, (19.31d)

ps ≥ −τ s. (19.31e)

1 9 . 5 . A T R U S T - R E G I O N I N T E R I O R - P O I N T M E T H O D 579

Here � is the primal-dual matrix (19.13), and the scalar τ ∈ (0, 1) is chosen close to 1
(for example, 0.995). The inequality (19.31e) plays the same role as the fraction to the
boundary rule (19.9). Ideally, we would like to set r � (rE, rI) � 0, but since this can cause
the constraints (19.31b)–(19.31d) to be incompatible or to give a step p that makes little
progress toward feasibility, we choose the parameter r by an auxiliary computation, as in
Algorithm 18.4.

We motivate the choice of the objective (19.31a) by noting that the first-order optimal-
ity conditions of (19.31a)–(19.31c) are given by (19.2) (with the second block of equations
scaled by S−1). Thus the step computed from the subproblem (19.31) is related to the
primal-dual line search step in the same way as the SQP and Newton–Lagrange steps of
Section 18.1.

The trust-region constraint (19.31d) guarantees that the problem (19.31) has a finite
solution even when∇2

xxL(x, s, y, z) is not positive definite, and therefore this Hessian need
never be modified. In addition, the trust-region formulation ensures that adequate progress
is made at every iteration. To justify the scaling S−1 used in (19.31d), we note that the shape
of the trust region must take into account the requirement that the slacks not approach zero
prematurely. The scaling S−1 serves this purpose because it restricts those components i of
the step vector ps for which si is close to its lower bound of zero. As we see below, it also
plays an important role in the choice of the relaxation vectors rE and rI.

We outline this SQP trust-region approach as follows. The stopping condition is
defined in terms of the error function E given by (19.10), and the merit function φν can be
defined as in (19.26) using the 2-norm, ‖ · ‖2.

Algorithm 19.3 (Trust-Region Algorithm for Barrier Problems).
Input parameters: µ > 0, x0, s0 > 0, εµ, and �0 > 0. Compute Lagrange multiplier

estimates y0 and z0 > 0. Set k ← 0.

repeat until E(xk, sk, yk, zk;µ) ≤ εµ

Compute p � (px , ps) by approximately solving (19.31).
if p provides sufficient decrease in the merit function φν

Set xk+1 ← xk + px , sk+1 ← sk + ps ;
Compute new multiplier estimates yk+1, zk+1 > 0

and set �k+1 ≥ �k ;
else

Define xk+1 ← xk , sk+1 ← sk , and set �k+1 < �k ;
end
Set k ← k + 1;

end (repeat)

Algorithm 19.3 is applied for a fixed value of the barrier parameter µ. A complete
interior-point algorithm driven by a sequence {µk} → 0 is described below. First, we
discuss how to find an approximate solution of the subproblem (19.31), along with Lagrange
multiplier estimates (yk+1, zk+1).

580 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

STEP COMPUTATION

The subproblem (19.31a)–(19.31e) is difficult to minimize exactly because of the
presence of the nonlinear constraint (19.31d) and the bounds (19.31e). An important
observation is that we can compute useful inexact solutions, at moderate cost. Since this
approach scales up well with the number of variables and constraints, it provides a framework
for developing practical interior-point methods for large-scale optimization.

The first step in the solution process is to make a change of variables that transforms
the trust-region constraint (19.31d) into a ball. By defining

p̃ �
[

px

p̃s

]
�
[

px

S−1 ps

]
, (19.32)

we can write problem (19.31) as

min
px , p̃s

∇ f T px + 1

2
pT

x ∇2
xxLpx − µeT p̃s + 1

2
p̃T

s S�S p̃s (19.33a)

subject to AE(x)px + cE(x) � rE, (19.33b)

AI(x)px − S p̃s + (cI(x)− s) � rI, (19.33c)

‖(px , p̃s)‖2 ≤ �, (19.33d)

p̃s ≥ −τe. (19.33e)

To compute the vectors rE and rI, we proceed as in Section 18.5 and formulate the following
normal subproblem in the variable v � (vx , vs):

min
v

‖AE(x)vx + cE(x)‖2
2 + ‖AI(x)vx − Svs + (cI(x)− s)‖2

2

(19.34a)

subject to ‖(vx , vs)‖2 ≤ 0.8�, (19.34b)

vs ≥ −(τ/2)e. (19.34c)

If we ignore (19.34c), this problem has the standard form of a trust-region problem, and we
can compute an approximate solution by using the techniques discussed in Chapter 4, such
as the dogleg method. If the solution violates the bounds (19.34c), we can backtrack so that
these bounds are satisfied.

Having solved (19.34), we define the vectors rE and rI in (19.33b)–(19.33c) to be the
residuals in the normal step computation, namely,

rE � AE(x)vx + cE(x), rI � AI(x)vx − Svs + (cI(x)− s). (19.35)

We are now ready to compute an approximate solution d̃ of the subproblem (19.33). By
(19.35), the vector v is a particular solution of the linear constraints (19.33b)–(19.33c). We

1 9 . 5 . A T R U S T - R E G I O N I N T E R I O R - P O I N T M E T H O D 581

can then solve the equality-constrained quadratic program (19.33a)–(19.33c) by using the
projected conjugate gradient iteration given in Algorithm 16.2. We terminate the projected
CG iteration by Steihaug’s rules: During the solution by CG we monitor the satisfaction
of the trust-region constraint (19.33d) and stop if the boundary of this region is reached,
if negative curvature is detected, or if an approximate solution is obtained. If the solution
given by the projected CG iteration does not satisfy the bounds (19.33e), we backtrack so
that they are satisfied. After the step (px , p̃s) has been computed, we recover p from (19.32).

As discussed in Section 16.3, every iteration of the projected CG iteration requires the
solution of a linear system in order to perform the projection operation. For the quadratic
program (19.33a)–(19.33c) this projection matrix is given by

[
I ÂT

Â 0

]
, with Â �

[
AE(x) 0

AI(x) −S

]
. (19.36)

Thus, although this trust-region approach still requires the solution of an augmented system,
the matrix (19.36) is simpler than the primal-dual matrix (19.12). In particular, the Hessian
∇2

xxL need never be factored because the CG approach requires only products of this matrix
with vectors.

We mentioned in Section 19.3 that the term S�S in (19.33a) has a much tighter
distribution of eigenvalues than �. Therefore the CG method will normally not be adversely
affected by ill conditioning and is a viable approach for solving the quadratic program
(19.33a)–(19.33c).

LAGRANGE MULTIPLIERS ESTIMATES AND STEP ACCEPTANCE

At an iterate (x, s), we choose (y, z) to be the least-squares multipliers (see (18.21))
corresponding to (19.33a)–(19.33c). We obtain the formula

[
y

z

]
�
(

Â ÂT
)−1

Â

[
∇ f (x)

−µe

]
, (19.37)

where Â is given by (19.36) The multiplier estimates z obtained in this manner may not
always be positive; to enforce positivity, we may redefine them as

zi ← min(10−3, µ/si), i � 1, 2, . . . , m. (19.38)

The quantity µ/si is called the i th primal multiplier estimate because if all components of
z were defined by (19.38), then � would reduce to the primal choice, (19.14).

As is standard in trust-region methods, the step p is accepted if

ared(p) ≥ η pred(p), (19.39)

582 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

where

ared(p) � φν(x, s)− φν(x + px , s + ps) (19.40)

and where η is a constant in (0, 1) (say, η � 10−8). The predicted reduction is defined as

pred(p) � qν(0)− qν(p), (19.41)

where qν is defined as

qν(p) � ∇ f T px + 1

2
pT

x ∇2
xxLpx − µeT S−1 ps + 1

2
pT

s �ps + νm(p),

and

m(p) �
∥∥∥∥∥
[

AE(x)px + cE(x)

AI(x)px − ps + cI(x)− s

]∥∥∥∥∥
2

.

To determine an appropriate value of the penalty parameter ν, we require that ν be
large enough that

pred(p) ≥ ρν(m(0)− m(p)), (19.42)

for some parameter ρ ∈ (0, 1). This is the same as condition (18.35) used in Section 18.5,
and the value of ν can be computed by the procedure described in that section.

DESCRIPTION OF A TRUST-REGION INTERIOR-POINT METHOD

We now present a more detailed description of the trust-region interior-point algo-
rithm for solving the nonlinear programming problem (19.1). For concreteness we follow
the Fiacco–McCormick strategy for updating the barrier parameter. The stopping conditions
are stated, once more, in terms of the error function E defined by (19.10). In a quasi-Newton
approach, the Hessian ∇2

xxL is replaced by a symmetric approximation.

Algorithm 19.4 (Trust-Region Interior-Point Algorithm).
Choose a value for the parameters η > 0, τ ∈ (0, 1), σ ∈ (0, 1), and ζ ∈ (0, 1), and

select the stopping tolerances εµ and εTOL . If a quasi-Newton approach is used, select an
n × n symmetric initial matrix B0. Choose initial values for µ > 0, x0, s0 > 0, and �0. Set
k ← 0.

repeat until E(xk, sk, yk, zk; 0) ≤ εTOL

repeat until E(xk, sk, yk, zk;µ) ≤ εµ

Compute Lagrange multipliers from (19.37)–(19.38);

1 9 . 6 . T H E P R I M A L L O G - B A R R I E R M E T H O D 583

Compute ∇2
xxL(xk, sk, yk, zk) or upate a quasi-Newton

approximation Bk , and define �k by (19.13);
Compute the normal step vk � (vx , vs);
Compute p̃k by applying the projected CG method to (19.33);
Obtain the total step pk from (19.32);
Update νk to satisfy (19.42);
Compute predk(pk) by (19.41) and aredk(pk) by (19.40);
if aredk(pk) ≥ η predk(pk)

Set xk+1 ← xk + px , sk+1 ← sk + ps ;
Choose �k+1 ≥ �k ;

else
set xk+1 � xk , sk+1 � sk ; and choose �k+1 < �k ;

endif
Set k ← k + 1;

end
Set µ ← σµ and update εµ;

end

The merit function (19.26) can reject steps that make good progress toward a solution:
the Maratos effect discussed in Chapter 18. This deficiency can be overcome by selective
application of a second-order correction step; see Section 15.4.

Algorithm 19.4 can easily be modified to implement an adaptive barrier update
strategy. The barrier stop tolerance can be defined as εµ � µ. Algorithm 19.4 is the basis
of the KNITRO/CG method [50], which implements both exact Hessian and quasi-Newton
options.

19.6 THE PRIMAL LOG-BARRIER METHOD

Prior to the introduction of primal-dual interior methods, barrier methods worked in the
space of primal variables x . As in the quadratic penalty function approach of Chapter 17,
the goal was to solve nonlinear programming problems by unconstrained minimization
applied to a parametric sequence of functions.

Primal barrier methods are more easily described in the context of inequality-
constrained problems of the form

min
x

f (x) subject to c(x) ≥ 0. (19.43)

The log-barrier function is defined by

P(x;µ) � f (x)− µ
∑
i∈I

log ci (x), (19.44)

584 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

where µ > 0. One can show that the minimizers of P(x;µ), which we denote by x(µ),
approach a solution of (19.43) as µ ↓ 0, under certain conditions; see, for example, [111].
The trajectory Cp defined by

Cp
def� {x(µ) |µ > 0} (19.45)

is often referred to as the primal central path.
Since the minimizer x(µ) of P(x;µ) lies in the strictly feasible set {x | c(x) > 0}

(where no constraints are active), we can in principle search for it by using any of the uncon-
strained minimization algorithms described in the first part of this book. These methods
need to be modified, as explained in the discussion following equation (19.30), so that they
reject steps that leave the feasible region or are too close to the constraint boundaries.

One way to obtain an estimate of the Lagrange multipliers is based on differentiating
P to obtain

∇x P(x;µ) � ∇ f (x)−
∑
i∈I

µ

ci (x)
∇ci (x). (19.46)

When x is close to the minimizer x(µ) and µ is small, we see from Theorem 12.1 that the
optimal Lagrange multipliers z∗i , i ∈ I , can be estimated as follows:

z∗i ≈ µ/ci (x), i ∈ I. (19.47)

A general framework for algorithms based on the primal log-barrier function (19.44)
can be specified as follows.

Framework 19.5 (Unconstrained Primal Barrier Method).
Given µ0 > 0, a sequence {τk} with τk → 0, and a starting point xs

0 ;
for k � 0, 1, 2, . . .

Find an approximate minimizer xk of P(·;µk), starting at xs
k ,

and terminating when ‖∇P(xk;µk)‖ ≤ τk ;
Compute Lagrange multipliers zk by (19.47);

if final convergence test satisfied
stop with approximate solution xk ;

Choose new penalty parameter µk+1 < µk ;
Choose new starting point xs

k+1;
end (for)

The primal barrier approach was first proposed by Frisch [115] in the 1950s and was
analyzed and popularized by Fiacco and McCormick [98] in the late 1960s. It fell out of
favor after the introduction of SQP methods and has not regained its popularity because it
suffers from several drawbacks compared to primal-dual interior-point methods. The most

1 9 . 6 . T H E P R I M A L L O G - B A R R I E R M E T H O D 585

important drawback is that the minimizer x(µ) becomes more and more difficult to find as
µ ↓ 0 because of the nonlinearity of the function P(x;µ)

❏ EXAMPLE 19.1

Consider the problem

min (x1 + 0.5)2 + (x2 − 0.5)2 subject to x1 ∈ [0, 1], x2 ∈ [0, 1], (19.48)

for which the primal barrier function is

P(x;µ) � (x1 + 0.5)2 + (x2 − 0.5)2 (19.49)

− µ
[
log x1 + log(1− x1)+ log x2 + log(1− x2)

]
.

Contours of this function for the value µ � 0.01 are plotted in Figure 19.1. The
elongated nature of the contours indicates bad scaling, which causes poor performance
of unconstrained optimization methods such as quasi-Newton, steepest descent, and con-
jugate gradient. Newton’s method is insensitive to the poor scaling, but the nonelliptical
property—the contours in Figure 19.1 are almost straight along the left edge while being
circular along the right edge—indicates that the quadratic approximation on which New-
ton’s method is based does not capture well the behavior of the barrier function. Hence,
Newton’s method, too, may not show rapid convergence to the minimizer of (19.49) except
in a small neighborhood of this point.

❐

0.05 0.1 0.15 0.2 0.25
0.35

0.4

0.45

0.5

0.55

0.6

0.65

Figure 19.1
Contours of P(x;µ) from
(19.49) for µ � 0.01

586 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

To lessen this nonlinearity, we can proceed as in (17.21) and introduce additional
variables. Defining zi � µ/ci (x), we rewrite the stationarity condition (19.46) as

∇ f (x)−
∑
i∈I

zi∇ci (x) � 0, (19.50a)

C(x)z − µe � 0, (19.50b)

where C(x) � diag(c1(x), c2(x), . . . , cm(x)). Note that this system is equivalent to the
perturbed KKT conditions (19.2) for problem (19.43) if, in addition, we introduce slacks as
in (19.2d). Finally, if we apply Newton’s method in the variables (x, s, z) and temporarily
ignore the bounds s, z ≥ 0, we arrive at the primal-dual formulation. Thus, with hindsight,
we can transform the primal log-barrier approach into the primal-dual line search approach
of Section 19.4 or into the trust-region algorithm of Section 19.5.

Other drawbacks of the classical primal barrier approach are that it requires a feasible
initial point, which can be difficult to find in many cases, and that the incorporation
of equality constraints in a primal function is problematic. (A formulation in which the
equality constraints are replaced by quadratic penalties suffers from the shortcomings of
quadratic penalty functions discussed in Section 17.1.)

The shortcomings of the primal barrier approach were attributed for many years to
the ill conditioning of the Hessian of the barrier function P . Note that

∇2
xx P(x;µ) � ∇2 f (x)−

∑
i∈I

µ

ci (x)
∇2ci (x)+

∑
i∈I

µ

c2
i (x)

∇ci (x)∇ci (x)T . (19.51)

By substituting (19.47) into (19.51) and using the definition (12.33) of the Lagrangian
L(x, z), we find that

∇2
xx P(x;µ) ≈ ∇2

xxL(x, z∗)+
∑
i∈I

1

µ
(z∗i)2∇ci (x)∇ci (x)T . (19.52)

Note the similarity of this expression to the Hessian of the quadratic penalty function (17.19).
Analysis of the matrix ∇2

xx P(x;µ) shows that it becomes increasingly ill conditioned near
the minimizer x(µ), as µ approaches zero.

This ill conditioning will be detrimental to the performance of the steepest descent,
conjugate gradient, or quasi-Newton methods. It is therefore correct to identify ill condi-
tioning as a source of the difficulties of unconstrained primal barrier functions that use these
unconstrained methods. Newton’s method is, however, not affected by ill conditioning, but
its performance is still not satisfactory. As explained above, it is the high nonlinearity of the
primal barrier function P that poses significant difficulties to Newton’s method.

1 9 . 7 . G L O B A L C O N V E R G E N C E P R O P E R T I E S 587

19.7 GLOBAL CONVERGENCE PROPERTIES

We now study some global convergence properties of the primal-dual interior-point methods
described in Sections 19.4 and 19.5. Theorem 19.1 provides the starting point for the analysis.
It gives conditions under which limit points of the iterates generated by the interior-point
methods are KKT points for the nonlinear problem. Theorem 19.1 relies on the assumption
that the perturbed KKT conditions (19.2) can be satisfied (to a certain accuracy) for every
value of µk . In this section we study conditions under which this assumption holds, that
is, conditions that guarantee that our algorithms can find stationary points of the barrier
problem (19.4).

We begin with a surprising observation. Whereas the line search primal-dual ap-
proach is the basis of globally convergent interior-point algorithms for linear and quadratic
programming, it is not guaranteed to be successful for nonlinear programming, even for
nondegenerate problems.

FAILURE OF THE LINE SEARCH APPROACH

We have seen in Chapter 11 that line search Newton iterations for nonlinear equations
can fail when the Jacobian loses rank. We now discuss a different kind of failure specific to
interior-point methods. It is caused by the lack of coordination between the step computation
and the imposition of the bounds.

❏ EXAMPLE 19.2 (WÄCHTER AND BIEGLER [299])

Consider the problem

min x (19.53a)

subject to c1(x)− s
def� x2 − s1 − 1 � 0, (19.53b)

c2(x)− s
def� x − s2 − 1

2 � 0, (19.53c)

s1 ≥ 0, s2 ≥ 0. (19.53d)

Note that the Jacobian of the equality constraints (19.53b)–(19.53c) with respect to (x, s)
has full rank everywhere. Let us apply a line search interior-point method of the form (19.6)–
(19.9), starting from an initial point x (0) such that (s(0)

1 , s(0)
2) > 0, and c1(x (0)) − s(0) ≥ 0.

(In this example, we use superscripts to denote iteration indices.) Figure 19.2 illustrates
the feasible region (the dotted segment of the parabola) and the initial point, all projected
onto the x-s1 plane. The primal-dual step, which satisfies the linearization of the constraints
(19.53b)–(19.53c), leads from x (0) to the tangent to the parabola. Here p1 and p2 are
examples of possible steps satisfying the linearization of (19.53b)–(19.53c). The new iterate
x (1) therefore lies between x (0) and this tangent, but since s1 must remain positive, x (1) will

588 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

x

s
1

feasible region

(x(0),s
1
(0))

p
1

p
2

Figure 19.2 Problem (19.53) projected onto the x-s1 plane.

lie above the horizontal axis. Thus, from any starting point above the x-axis and to the left
of the parabola, namely, in the region

{(x, s1, s2) : x2 − s1 − 1 ≥ 0, s1 ≥ 0}, (19.54)

the new iterate will remain in this region. The argument can now be repeated to show that
the iterates {x (k)} never leave the region (19.54) and therefore never become feasible.

This convergence failure affects any method that generates directions that satisfy the
linearization of the constraints (19.53b)–(19.53c) and that enforces the bounds (19.53d) by
the fraction to the boundary rule (19.8). The merit function can only restrict the step length
further and is therefore incapable of resolving the difficulties. The strategy for updating µ

is also irrelevant because the argument given above makes use only of the linearizations of
the constraints.

❐

These difficulties can be observed when practical line-search codes are applied to the
problem (19.53). For a wide range of starting points in the region (19.54), the interior-
point iteration converges to points of the form (−β, 0, 0), with β > 0. In other words,
the iterates can converge to an infeasible, non-optimal point on the boundary of the
set {(x1, s1, s2) : s1 ≥ 0, s2 ≥ 0}, a situation that barrier methods are supposed to
prevent. Furthermore, such limit points are not stationary for a feasibility measure (see
Definition 17.1).

1 9 . 7 . G L O B A L C O N V E R G E N C E P R O P E R T I E S 589

Failures of this type are rare in practice, but they highlight a theoretical deficiency of
the algorithmic class (19.6)–(19.9) that may manifest itself more often as inefficient behavior
than as outright convergence failure.

MODIFIED LINE SEARCH METHODS

To remedy this problem, as well as the inefficiencies caused by Hessian and constraint
Jacobian singularities, we must modify the search direction of the line search interior-point
iteration in some circumstances. One option is to use penalizations of the constraints
[147]. Such penalty-barrier methods have been investigated only recently and mature
implementations have not yet emerged.

An approach that has been successful in practice is to monitor the step lengths αs, αz

in (19.28); if they are smaller than a given threshold, then we replace the primal-dual step
by a step that guarantees progress in feasibility and, preferably, improvement in optimality,
too. In a filter method, when the step lengths are very small, we can invoke the feasibility
restoration phase (see Section 15.4), which is designed to generate a new iterate that reduces
the infeasibility. A different approach, which assumes that a trust-region algorithm is at
hand, is to replace the primal-dual step by a trust-region step, such as that produced by
Algorithm 19.4.

Safeguarding the primal-dual step when the step lengths are very small is justified
theoretically because, when line search iterations converge to non-stationary points, the
step lengths αs, αz converge to zero. From a practical perspective, however, this strategy is
not totally satisfactory because it attempts to react when bad steps are generated, rather
than trying to prevent them. It also requires the choice of a heuristic to determine when
a step length is too small. As we discuss next, the trust-region approach always generates
productive steps and needs no safeguarding.

GLOBAL CONVERGENCE OF THE TRUST-REGION APPROACH

The interior-point trust-region method specified in Algorithm 19.4 has favorable
global convergence properties, which we now discuss. For simplicity, we present the analysis
in the context of inequality-constrained problems of the form (19.43). We first study the
solution of the barrier problem (19.4) for a fixed value of µ, and then consider the complete
algorithm.

In the result that follows, Bk denotes the Hessian∇2
xxLk or a quasi-Newton approxima-

tion to it. We use the measure of infeasibility h(x) � ‖[c(x)]−‖, where [y] � max{0,−y}.
This measure vanishes if and only if x is feasible for problem (19.43). Note that h(x)2 is
differentiable and its gradient is

∇[h(x)2] � 2A(x)c(x)−.

590 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

We say that a sequence {xk} is asymptotically feasible if c(xk)− → 0. To apply Algorithm 19.4
to a fixed barrier problem, we dispense with the outer “repeat” loop.

Theorem 19.2.
Suppose that Algorithm 19.4 is applied to the barrier problem (19.4), that is, µ is fixed

and the inner “repeat” loop is executed with εµ � 0. Suppose that the sequence { fk} is bounded
below and the sequences {∇ fk}, {ck}, {Ak}, and {Bk} are bounded. Then one of the following
three situations occurs:

(i) The sequence {xk} is not asymptotically feasible. In this case, the iterates approach sta-
tionarity of the measure of infeasibility h(x) � ‖c(x)−‖, meaning that Akc−k → 0, and
the penalty parameters νk tend to infinity.

(ii) The sequence {xk} is asymptotically feasible, but the sequence {(ck, Ak)} has a limit point
(γ̄ , Ā) failing the linear independence constraint qualification. In this situation also, the
penalty parameters νk tend to infinity.

(iii) The sequence {xk} is asymptotically feasible, and all limit points of the sequence {(ck, Ak)}
satisfy the linear independence constraint qualification. In this case, the penalty parameter
νk is constant and ck > 0 for all large indices k, and the stationarity conditions of problem
(19.4) are satisfied in the limit.

This theorem is proved in [48], where it is assumed, for simplicity, that � is given
by the primal choice (19.14). The theorem accounts for two situations in which the KKT
conditions may not be satisfied in the limit, both of which are of interest. Outcome (i) is
a case in which, in the limit, there is no direction that improves feasibility to first order.
This outcome cannot be ruled out because finding a feasible point is a problem that a local
method cannot always solve without a good starting point. (Note that we do not assume
that the constraint Jacobian Ak has full rank.)

In considering outcome (ii), we must keep in mind that in some cases the solution to
problem (19.43) is a point where the linear independence constraint qualification fails and
that is not a KKT point. Outcome (iii) is the most desirable outcome and can be monitored
in practice by observing, for example, the behavior of the penalty parameter νk .

We now study the complete interior-point method given in Algorithm 19.4 applied
to the nonlinear programming problem (19.43). By combining Theorems 19.1 and 19.2 we
see that the following outcomes can occur:

• For some barrier parameter µ generated by the algorithm, either the inequality ‖ck −
sk‖ ≤ εµ is never satisfied, in which case the stationarity condition for minimizing
h(x) is satisfied in the limit, or else (ck−sk) → 0, in which case the sequence {(ck, Ak)}
has a limit point (c̄, Ā) failing the linear independence constraint qualification;

• At each outer iteration of Algorithm 19.4 the inner stop test E(xk, sk, yk, zk;µ) ≤ εµ

is satisfied. Then all limit points of the iteration sequence are feasible. Furthermore,

1 9 . 8 . S U P E R L I N E A R C O N V E R G E N C E 591

if any limit point x̂ satisfies the linear independence constraint qualification, the
first-order necessary conditions for problem (19.43) hold at x̂ .

19.8 SUPERLINEAR CONVERGENCE

We can implement primal-dual interior-point methods so that they converge quickly near
the solution. All is needed is that we carefully control the decrease in the barrier parameter
µ and the inner convergence tolerance εµ, and let the parameter τ in (19.9) converge to 1
sufficiently rapidly. We now describe strategies for updating these parameters in the context
of the line search iteration discussed in Section 19.4; these strategies extend easily to the
trust-region method of Section 19.5.

In the discussion that follows, we assume that the merit function or filter is inactive.
This assumption is realistic because with a careful implementation (which may include
second-order correction steps or other features), we can ensure that, near a solution, all the
steps generated by the primal-dual method are acceptable to the merit function or filter.

We denote the primal-dual iterates by

v � (x, s, y, z) (19.55)

and define the full primal-dual step (without backtracking) by

v+ � v + p, (19.56)

where p is the solution of (19.12). To establish local convergence results, we assume that the
iterates converge to a solution point satisfying certain regularity assumptions.

Assumptions 19.1.
(a) v∗ is a solution of the nonlinear program (19.1) for which the first-order KKT conditions

are satisfied.

(b) The Hessian matrices ∇2 f (x) and ∇2ci (x), i ∈ E ∪ I , are locally Lipschitz continuous
at v∗.

(c) The linear independence constraint qualification (LICQ) (Definition 12.4), the strict
complementarity condition (Definition 12.5), and the second-order sufficient conditions
(Theorem 12.6) hold at v∗.

We assume that v is an iterate at which the inner stop test E(v, µ) ≤ εµ is satisfied,
so that the barrier parameter is decreased from µ to µ+. We now study how to control the
parameters in Algorithm 19.2 so that the following three properties hold in a neighborhood
of v∗:

592 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

1. The iterate v+ satisfies the fraction to the boundary rule (19.9), that is, αmax
s � αmax

z � 1.

2. The inner stop test is satisfied at v+, that is, E(v+;µ+) ≤ εµ+ .

3. The sequence of iterates (19.56) converge superlinearly to v∗.

We can achieve these three goals by letting

εµ � θµ and εµ+ � θµ+, (19.57)

for θ > 0, and setting the other parameters as follows:

µ+ � µ1+δ, δ ∈ (0, 1); τ � 1− µβ, β > δ. (19.58)

There are other practical ways of controlling the parameters of the algorithm. For example,
we may prefer to determine the change in µ from the reduction achieved in the KKT
conditions of the nonlinear program, as measured by the function E . The three results
mentioned above can be established if the convergence tolerance εµ is defined as in (19.57)
and if we replace µ by E(v; 0) in the right-hand sides of the definitions (19.58) of µ+ and
τ .

There is a limit to how fast we can decrease µ and still be able to satisfy the inner stop
test after just one iteration (condition 2). One can show that there is no point in decreasing µ

at a faster than quadratic rate, since the overall convergence cannot be faster than quadratic.
Not suprising, if τ is constant and µ+ � σµ, with σ ∈ (0, 1), then the interior-point
algorithm is only linearly convergent.

Although it is desirable to implement interior-point methods so that they achieve a
superlinear rate of convergence, this rate is typically observed only in the last few iterations
in practice.

19.9 PERSPECTIVES AND SOFTWARE

Software packages that implement nonlinear interior-point methods are widely available.
Line search implementations include LOQO [294], KNITRO/DIRECT [303], IPOPT [301], and
BARNLP [21], and for convex problems, MOSEK [5]. The trust-region algorithm discussed in
Section 19.5 has been implemented in KNITRO/CG [50]. These interior-point packages have
proved to be strong competitors of the leading active-set and augmented Lagrangian pack-
ages, such as MINOS [218], SNOPT [128], LANCELOT [72], FILTERSQP [105], and KNITRO/ACTIVE

[49]. At present, interior-point and active-set methods appear to be the most promising
approaches, while augmented Lagrangian methods seem to be less efficient. The KNITRO

package provides crossover from interior-point to active-set modes [46].
Interior-point methods show their strength in large-scale applications, where they

often (but not always) outperform active-set methods. In interior-point methods, the linear

1 9 . 9 . P E R S P E C T I V E S A N D S O F T W A R E 593

system to be solved at every iteration has the same block structure, so effort can be focused
on exploiting this structure. Both direct factorization techniques and projected CG methods
are available, allowing the user to solve many types of applications efficiently. On the other
hand, interior-point methods, unlike active-set methods, consider all the constraints at each
iteration, even if they are irrelevant to the solution. As a result, the cost of the primal-dual
iteration can be excessive in some applications.

One of the main weaknesses of interior-point methods is their sensitivity to the choice
of the initial point, the scaling of the problem, and the update strategy for the barrier parame-
ter µ. If the iterates approach the boundary of the feasible region prematurely, interior-point
methods may have difficulty escaping it, and convergence can be slow. The availability of
adaptive strategies for updating µ is, however, beginning to lessen this sensitivity, and more
robust implementations can be expected in the coming years.

Although the description of the line search algorithm in Section 19.4 is fairly complete,
various details of implementation (such as second-order corrections, iterative refinement,
and resetting of parameters) are needed to obtain a robust code. Our description of the trust-
region method of Algorithm 19.4 leaves some important details unspecified, particularly
concerning the procedure for computing approximate solutions of the normal and tangential
subproblems; see [50] for further discussion. The KNITRO/CG implementation of this trust-
region algorithm uses a projected CG iteration in the computation of the step, which allows
the method to work even when only Hessian–vector products are available, not the Hessian
itself.

Filters and merit functions have each been used to globalize interior-point methods.
Although some studies have shown that merit functions restrict the progress of the iteration
unduly [298], recent developments in penalty update procedures (see Chapter 18) have
altered the picture, and it is currently unclear whether filter globalization approaches are
preferable.

NOTES AND REFERENCES

The development of modern nonlinear interior-point methods was influenced by the
success of interior-point methods for linear and quadratic programming. The concept of
primal-dual steps arises from the homotopy formulation given in Section 19.1, which is
an extension of the systems (14.13) and (16.57) for linear and quadratic programming.
Although the primal barrier methods of Section 19.6 predate primal-dual methods by at
least 15 years, they played a limited role in their development.

There is a vast literature on nonlinear interior-point methods. We refer the reader
to the surveys by Forsgren, Gill, and Wright [111] and Gould, Orban, and Toint [147] for
a comprehensive list of references. The latter paper also compares and contrasts interior-
point methods with other nonlinear optimization methods. For an analysis of interior-point
methods that use filter globalization see, for example, Ulbrich, Ulbrich, and Vicente [291]
and Wächter and Biegler [300]. The book by Conn, Gould, and Toint [74] gives a thorough
presentation of several interior-point methods.

594 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

Primal barrier methods were originally proposed by Frisch [115] and were analyzed
in an authoritative book by Fiacco and McCormick [98]. The term “interior-point method”
and the concept of the primal central pathCp appear to have originated in this book. Nesterov
and Nemirovskii [226] propose and analyze several families of barrier methods and establish
polynomial-time complexity results for very general classes of problems such as semidefinite
and second-order cone programming. For a discussion of the history of barrier function
methods, see Nash [221].

✐ E X E R C I S E S

✐ 19.1 Consider the nonlinear program

min f (x) subject to cE(x) � 0, cI(x) ≥ 0. (19.59)

(a) Write down the KKT conditions of (19.1) and (19.59), and establish a one-to-one
correspondence between KKT points of these problems (despite the different numbers
of variables and multipliers).

(b) The multipliers z correspond to the equality constraints (19.1c) and should therefore
be unsigned. Nonetheless, argue that (19.2) with µ � 0 together with (19.3) can be
seen as the KKT conditions of problem (19.1). Moreover, argue that the multipliers z
in (19.2) can be seen as the multipliers of the inequalities cI in (19.59).

(c) Suppose x̄ is feasible for (19.59). Show that LICQ holds at x̄ for (19.59) if and only if
LICQ holds at (x̄, s̄) for (19.1), with s̄ � cI(x̄).

(d) Repeat part (c) assuming that the MFCQ condition holds (see Definition 12.6) instead
of LICQ.

✐ 19.2 This question concerns Algorithm 19.1.

(a) Extend the proof of Theorem 19.1 to the general nonlinear program (19.1).

(b) Show that the theorem still holds if the condition E(xk, sk, yk, zk) ≤ µk is replaced by
E(xk, sk, yk, zk) ≤ εµk , for any sequence εµk that converges to 0 as µk → 0.

(c) Suppose that in Algorithm 19.1 the new iterate (xk+1, sk+1, yk+1, zk+1) is obtained by
any means. What conditions are required on this iterate so that Theorem 19.1 holds?

✐ 19.3 Consider the nonlinear system of equations (11.1). Show that Newton’s method
(11.6) is invariant to scalings of the equations. More precisely, show that the Newton step p
does not change if each component of r is multiplied by a nonzero constant.

1 9 . 9 . P E R S P E C T I V E S A N D S O F T W A R E 595

✐ 19.4 Consider the system

x1 + x2 − 2 � 0,

x1x2 − 2x2
2 + 1 � 0.

Find all the solutions to this system. Show that if the first equation is multiplied by x2, the
solutions do not change but the Newton step taken from (1,−1) will not be the same as
that for the original system.

✐ 19.5 Let (x, s, y, z) be a primal-dual solution that satisfies the LICQ and strict
complementarity conditions.

(a) Give conditions on ∇2
xx cL(x, s, y, z) thatensure that the primal-dual matrix in (19.6)

is nonsingular.

(b) Show that some diagonal elements of � tend to infinity and others tend to zero when
µ → 0. Can you characterize each case? Consider the cases in which � is defined by
(19.13) and (19.14).

(c) Argue that the matrix in (19.6) is not ill conditioned under the assumptions of this
problem.

✐ 19.6

(a) Introduce the change of variables p̃s � S−1 ps in (19.12), and show that the (2, 2)
block of the primal-dual matrix has a cluster of eigenvalues around 0 when µ → 0.

(b) Analyze the eigenvalue distribution of the (2, 2) block if the change of variables is given
by p̃s � �1/2 ps or p̃s � √

µS−1 ps .

(c) Let γ > 0 be the smallest eigenvalue of∇2
xx cL. Describe a change of variables for which

all the eigenvalues of the (2, 2) block converge to γ as µ → 0.

✐ 19.7 Program the simple interior-point method Algorithm 19.1 and apply it to the
problem (18.69). Use the same starting point as in that problem. Try different values for the
parameter σ .

✐ 19.8

(a) Compute the minimum-norm solution of the system of equations defined by (19.35).
(This system defines the Newton component in the dogleg method used to find an ap-
proximate solution to (19.34).) Show that the computation of the Newton component
can use the factorization of the augmented matrix defined in (19.36).

(b) Compute the unconstrained minimizer of the quadratic in (19.34a) along the steepest
descent direction, starting from v � 0. (This minimizer defines the Cauchy component
in the dogleg method used to find an approximate solution to (19.34).)

596 C H A P T E R 1 9 . N O N L I N E A R I N T E R I O R M E T H O D S

(c) The dogleg step is a combination of the Newton and Cauchy steps from parts (a) and
(b). Show that the dogleg step is in the range space of ÂT .

✐ 19.9

(a) If the normal subproblem (19.34a)–(19.34c) is solved by using the dogleg method,
show that the solution v is in the range space of matrix ÂT defined in (19.36).

(b) After the normal step v is obtained, we define the residual vectors rE and rI as in
(19.35) and w � p̃− v. Show that (19.33) becomes a quadratic program with circular
trust-region constraint and bound constraint in the variables w.

(c) Show that the solution w of the problem derived in part (b) is orthogonal to the normal
step v, that is, that wT v � 0.

✐ 19.10 Verify that the least-squares multiplier formula (18.21) corresponding to
(19.33a)–(19.33c) is given by (19.37).

✐ 19.11

(a) Write the primal-dual system (19.6) for problem (19.53), considering s1, s2 as slacks
and denoting the multipliers of (19.53b), (19.53c) by z1, z2. (You should get a system
of five equations with five unknowns.) Show that the matrix of the system is singular
at any iterate of the form (x, 0, 0).

(b) Show that if the starting point in Example (19.53) lies in the region (19.54), the
interior-point step leads to a point on the tangent line to the parabola, as illustrated in
Figure 19.2. (More specifically, show that the tangent line never lies to the left of the
parabola.)

(c) Let x (0) � −2, s(0)
1 � 1, s(0)

2 � 1, let z(0)
1 � z(0)

2 � 1, and let µ � 0. Compute the full
Newton step based on the system in part (a). Truncate, if necessary, to satisfy a fraction
to the boundary rule with τ � 1. Verify that the new iterate is still in the region (19.54).

(d) Let us the consider the behavior of an SQP method. For the initial point in (c),
show that the linearized constraints of problem (18.56) (don’t forget the constraints
s1 ≥ 0, s2 ≥ 0) are inconsistent. Therefore, the SQP subproblem (18.11) is inconsistent,
and a relaxation of the constraint of the SQP subproblem must be performed.

✐ 19.12 Consider the following problem in a single variable x :

min x subject to x ≥ 0, 1− x ≥ 0.

(a) Write the primal barrier function P(x;µ) associated with this problem.

(b) Plot the barrier function for different values of µ.

1 9 . 9 . P E R S P E C T I V E S A N D S O F T W A R E 597

(c) Characterize the minimizers of the barrier function as a function of µ and consider the
limit as µ goes to 0.

✐ 19.13 Consider the scalar minimization problem

min
x

1

1+ x2
, subject to x ≥ 1.

Write down P(x;µ) for this problem, and show that P(x;µ) is unbounded below for any
positive value of µ. (See Powell [242] and M. Wright [313].)

✐ 19.14
The goal of this exercise is to describe an efficient implementation of the limited-

memory BFGS version of the interior-point method using the compact representation
(19.29). First we decompose the primal-dual matrix as

⎡
⎢⎢⎢⎢⎣

ξ I 0 AE
T AI

T

0 � 0 I

AE 0 0 0

AI I 0 0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

W

0

0

0

⎤
⎥⎥⎥⎥⎦
[

MW T 0 0 0
]
. (19.60)

Use the Sherman–Morrison–Woodbury formula to express the inverse (19.60). Then show
that the primal-dual step (19.12) requires the solution of systems of the form Cv � b, where
C is the left matrix in (19.60) and v and b are certain vectors.

This is pag
Printer: O

A P P E N D I X A
Background
Material

A.1 ELEMENTS OF LINEAR ALGEBRA

VECTORS AND MATRICES

In this book we work exclusively with vectors and matrices whose components are
real numbers. Vectors are usually denoted by lowercase roman characters, and matrices by
uppercase roman characters. The space of real vectors of length n is denoted by IRn , while
the space of real m × n matrices is denoted by IRm×n .

A . 1 . E L E M E N T S O F L I N E A R A L G E B R A 599

Given a vector x ∈ IRn , we use xi to denote its i th component. We invariably assume
that x is a column vector, that is,

x �

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

...

xn

⎤
⎥⎥⎥⎥⎥⎦ .

The transpose of x , denoted by xT is the row vector

xT � [
x1 x2 · · · xn

]
,

and is often also written with parentheses as x � (x1, x2, . . . , xn). We write x ≥ 0 to indicate
componentwise nonnegativity, that is, xi ≥ 0 for all i � 1, 2, . . . , n, while x > 0 indicates
that xi > 0 for all i � 1, 2, . . . , n.

Given x ∈ IRn and y ∈ IRn , the standard inner product is xT y �∑n
i�1 xi yi .

Given a matrix A ∈ IRm×n , we specify its components by double subscripts as Ai j ,
for i � 1, 2, . . . , m and j � 1, 2, . . . , n. The transpose of A, denoted by AT , is the n × m
matrix whose components are A ji . The matrix A is said to be square if m � n. A square
matrix is symmetric if A � AT .

A square matrix A is positive definite if there is a positive scalar α such that

xT Ax ≥ αxT x, for all x ∈ IRn . (A.1)

It is positive semidefinite if

xT Ax ≥ 0, for all x ∈ IRn .

We can recognize that a symmetric matrix is positive definite by computing its eigenvalues
and verifying that they are all positive, or by performing a Cholesky factorization. Both
techniques are discussed further in later sections.

The diagonal of the matrix A ∈ IRm×n consists of the elements Aii , for i �
1, 2, . . . min(m, n). The matrix A ∈ IRm×n is lower triangular if Ai j � 0 whenever i < j ; that
is, all elements above the diagonal are zero. It is upper triangular if Ai j � 0 whenever i > j ;
that is, all elements below the diagonal are zero. A is diagonal if Ai j � 0 whenever i 	� j .

The identity matrix, denoted by I , is the square diagonal matrix whose diagonal
elements are all 1.

A square n × n matrix A is nonsingular if for any vector b ∈ IRn , there exists x ∈ IRn

such that Ax � b. For nonsingular matrices A, there exists a unique n × n matrix B such
that AB � B A � I . We denote B by A−1 and call it the inverse of A. It is not hard to show
that the inverse of AT is the transpose of A−1.

A square matrix Q is orthogonal if it has the property that Q QT � QT Q � I . In
other words, the inverse of an orthogonal matrix is its transpose.

600 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

NORMS

For a vector x ∈ IRn , we define the following norms:

‖x‖1
def�

n∑
i�1

|xi |, (A.2a)

‖x‖2
def�
(

n∑
i�1

x2
i

)1/2

� (xT x)1/2, (A.2b)

‖x‖∞ def� max
i�1,...,n

|xi |. (A.2c)

The norm ‖ · ‖2 is often called the Euclidean norm. We sometimes refer to ‖ · ‖1 as the �1

norm and to ‖ · ‖∞ as the �∞ norm. All these norms measure the length of the vector in
some sense, and they are equivalent in the sense that each one is bounded above and below
by a multiple of the other. To be precise, we have for all x ∈ IRn that

‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞, ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞, (A.3)

and so on. In general, a norm is any mapping ‖ · ‖ from IRn to the nonnegative real numbers
that satisfies the following properties:

‖x + z‖ ≤ ‖x‖ + ‖z‖, for all x, z ∈ IRn; (A.4a)

‖x‖ � 0 ⇒ x � 0; (A.4b)

‖αx‖ � |α|‖x‖, for all α ∈ IR and x ∈ IRn . (A.4c)

Equality holds in (A.4a) if and only if one of the vectors x and z is a nonnegative scalar
multiple of the other.

Another interesting property that holds for the Euclidean norm ‖ · ‖ � ‖ · ‖2 is the
Cauchy–Schwarz inequality, which states that

∣∣xT z
∣∣ ≤ ‖x‖ ‖z‖, (A.5)

with equality if and only if one of these vectors is a nonnegative multiple of the other. We
can prove this result as follows:

0 ≤ ‖αx + z‖2 � α2‖x‖2 + 2αxT z + ‖z‖2.

The right-hand-side is a convex function of α, and it satisfies the required nonnegativity
property only if there exist fewer than 2 distinct real roots, that is,

(2xT z)2 ≤ 4‖x‖2‖z‖2,

A . 1 . E L E M E N T S O F L I N E A R A L G E B R A 601

proving (A.5). Equality occurs when the quadratic α has exactly one real root (that is,
|xT z| � ‖x‖ ‖z‖) and when αx + z � 0 for some α, as claimed.

Any norm ‖ · ‖ has a dual norm ‖ · ‖D defined by

‖x‖D � max
‖y‖�1

xT y. (A.6)

It is easy to show that the norms ‖ · ‖1 and ‖ · ‖∞ are duals of each other, and that the
Euclidean norm is its own dual.

We can derive definitions for certain matrix norms from these vector norm defini-
tions. If we let ‖ · ‖ be generic notation for the three norms listed in (A.2), we define the
corresponding matrix norm as

‖A‖ def� sup
x 	�0

‖Ax‖
‖x‖ . (A.7)

The matrix norms defined in this way are said to be consistent with the vector norms (A.2).
Explicit formulae for these norms are as follows:

‖A‖1 � max
j�1,...,n

m∑
i�1

|Ai j |, (A.8a)

‖A‖2 � largest eigenvalue of (AT A)1/2, (A.8b)

‖A‖∞ � max
i�1,...,m

n∑
j�1

|Ai j |. (A.8c)

The Frobenius norm ‖A‖F of the matrix A is defined by

‖A‖F �
⎛
⎝ m∑

i�1

n∑
j�1

A2
i j

⎞
⎠

1/2

. (A.9)

This norm is useful for many purposes, but it is not consistent with any vector norm. Once
again, these various matrix norms are equivalent with each other in a sense similar to (A.3).

For the Euclidean norm ‖ · ‖ � ‖ · ‖2, the following property holds:

‖AB‖ ≤ ‖A‖ ‖B‖, (A.10)

for all matrices A and B with consistent dimensions.
The condition number of a nonsingular matrix is defined as

κ(A) � ‖A‖ ‖A−1‖, (A.11)

602 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

where any matrix norm can be used in the definition. Different norms can by the use of a
subscript—κ1(·), κ2(·), and κ∞(·), respectively—with κ denoting κ2 by default.

Norms also have a meaning for scalar, vector, and matrix-valued functions that are
defined on a particular domain. In these cases, we can define Hilbert spaces of functions for
which the inner product and norm are defined in terms of an integral over the domain. We
omit details, since all the development of this book takes place in the space IRn , though many
of the algorithms can be extended to more general Hilbert spaces. However, we mention
for purposes of the analysis of Newton-like methods that the following inequality holds for
functions of the type that we consider in this book:

∥∥∥∥
∫ b

a
F(t)

∥∥∥∥ ≤
∫ b

a
‖F(t)‖ dt, (A.12)

where F is a continuous scalar-, vector-, or matrix-valued function on the interval [a, b].

SUBSPACES

Given the Euclidean space IRn , the subset S ⊂ IRn is a subspace of IRn if the following
property holds: If x and y are any two elements of S , then

αx + βy ∈ S, for all α, β ∈ IR.

For instance,S is a subspace of IR2 if it consists of (i) the whole space IRn ; (ii) any line passing
through the origin; (iii) the origin alone; or (iv) the empty set.

Given any set of vectors ai ∈ IRn , i � 1, 2, . . . , m, the set

S � {
w ∈ IRn | aT

i w � 0, i � 1, 2, . . . , m
}

(A.13)

is a subspace. However, the set

{
w ∈ IRn | aT

i w ≥ 0, i � 1, 2, . . . , m
}

(A.14)

is not in general a subspace. For example, if we have n � 2, m � 1, and a1 � (1, 0)T , this set
would consist of all vectors (w1, w2)T with w1 ≥ 0, but then given two vectors x � (1, 0)T

and y � (2, 3) in this set, it is easy to choose multiples α and β such that αx + βy has a
negative first component, and so lies outside the set.

Sets of the forms (A.13) and (A.14) arise in the discussion of second-order optimality
conditions for constrained optimization.

A set of vectors {s1, s2, . . . , sm} in IRn is called a linearly independent set if there are no
real numbers α1, α2, . . . , αm such that

α1s2 + α2s2 + · · · + αmsm � 0,

A . 1 . E L E M E N T S O F L I N E A R A L G E B R A 603

unless we make the trivial choice α1 � α2 � · · · � αm � 0. Another way to define linear
independence is to say that none of the vectors s1, s2, . . . , sm can be written as a linear
combination of the other vectors in this set. If in fact we have si ∈ S for all i � 1, 2, . . . , m,
we say that {s1, s2, . . . , sm} is a spanning set for S if any vector s ∈ S can be written as

s � α1s2 + α2s2 + · · · + αmsm,

for some particular choice of the coefficients α1, α2, . . . , αm .
If the vectors s1, s2, . . . , sm are both linearly independent and a spanning set for S ,

we call them a basis of S . In this case, m (the number of elements in the basis) is referred to
as the dimension of S , and denoted by dim(S). Note that there are many ways to choose a
basis of S in general, but that all bases contain the same number of vectors.

If A is any real matrix, the null space is the subspace

Null(A) � {w | Aw � 0},

while the range space is

Range(A) � {w |w � Av for some vector v}.

The fundamental theorem of linear algebra states that

Null(A)⊕ Range(AT) � IRn,

where n is the number of columns in A. (Here, “⊕” denotes the direct sum of two sets:
A⊕ B � {x + y | x ∈ A, y ∈ B}.)

When A is square (n × n) and nonsingular, we have NullA � NullAT � {0} and
RangeA � RangeAT � IRn . In this case, the columns of A form a basis of IRn , as do the
columns of AT .

EIGENVALUES, EIGENVECTORS, AND THE SINGULAR-VALUE
DECOMPOSITION

A scalar value λ is an eigenvalue of the n × n matrix A if there is a nonzero vector q
such that

Aq � λq.

The vector q is called an eigenvector of A. The matrix A is nonsingular if none of its
eigenvalues are zero. The eigenvalues of symmetric matrices are all real numbers, while
nonsymmetric matrices may have imaginary eigenvalues. If the matrix is positive definite as
well as symmetric, its eigenvalues are all positive real numbers.

604 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

All matrices A (not necessarily square) can be decomposed as a product of three
matrices with special properties. When A ∈ IRm×n with m > n, (that is, A has more rows
than columns), this singular-value decomposition (SVD) has the form

A � U

[
S

0

]
V T , (A.15)

where U and V are orthogonal matrices of dimension m × m and n × n, respectively, and
S is an n × n diagonal matrix with diagonal elements σi , i � 1, 2, . . . , n, that satisfy

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

These diagonal values are called the singular values of A. We can define the condition
number (A.11) of the m × n (possibly nonsquare) matrix A to be σ1/σn . (This definition is
identical to κ2(A) when A happens to be square and nonsingular.)

When m ≤ n (the number of columns is at least equal to the number of rows), the
SVD has the form

A � U
[

S 0
]

V T ,

where again U and V are orthogonal of dimension m × m and n × n, respectively, while S
is m × m diagonal with nonnegative diagonal elements σ1 ≥ σ2 ≥ · · · ≥ σm .

When A is symmetric, its n real eigenvalues λ1, λ2, . . . , λn and their associated
eigenvectors q1, q2, . . . , qn can be used to write a spectral decomposition of A as follows:

A �
n∑

i�1

λi qi q
T
i .

This decomposition can be restated in matrix form by defining

� � diag(λ1, λ2, · · · , λn), Q � [q1 | q2 | . . . | qn],

and writing

A � Q�QT . (A.16)

In fact, when A is positive definite as well as symmetric, this decomposition is identical to
the singular-value decomposition (A.15), where we define U � V � Q and S � �. Note
that the singular values σi and the eigenvalues λi coincide in this case.

A . 1 . E L E M E N T S O F L I N E A R A L G E B R A 605

In the case of the Euclidean norm (A.8b), we have for symmetric positive definite
matrices A that the singular values and eigenvalues of A coincide, and that

‖A‖ � σ1(A) � largest eigenvalue of A,

‖A−1‖ � σn(A)−1 � inverse of smallest eigenvalue of A.

Hence, we have for all x ∈ IRn that

σn(A)‖x‖2 � ‖x‖2/‖A−1‖ ≤ xT Ax ≤ ‖A‖‖x‖2 � σ1(A)‖x‖2.

For an orthogonal matrix Q, we have for the Euclidean norm that

‖Qx‖ � ‖x‖,

and that all the singular values of this matrix are equal to 1.

DETERMINANT AND TRACE

The trace of an n × n matrix A is defined by

trace(A) �
n∑

i�1

Aii . (A.17)

If the eigenvalues of A are denoted by λ1, λ2, . . . , λn , it can be shown that

trace(A) �
n∑

i�1

λi , (A.18)

that is, the trace of the matrix is the sum of its eigenvalues.
The determinant of an n × n matrix A, denoted by det A, is the product of its

eigenvalues; that is,

det A �
n∏

i�1

λi . (A.19)

The determinant has several appealing (and revealing) properties. For instance,

det A � 0 if and only if A is singular;

det AB � (det A)(det B);

det A−1 � 1/ det A.

606 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

Recall that any orthogonal matrix A has the property that Q QT � QT Q � I , so that
Q−1 � QT . It follows from the property of the determinant that det Q � det QT � ±1.

The properties above are used in the analysis of Chapter 6.

MATRIX FACTORIZATIONS: CHOLESKY, LU, QR

Matrix factorizations are important both in the design of algorithms and in their
analysis. One such factorization is the singular-value decomposition defined above in (A.15).
Here we define the other important factorizations.

All the factorization algorithms described below make use of permutation matrices.
Suppose that we wish to exchange the first and fourth rows of a matrix A. We can perform
this operation by premultiplying A by a permutation matrix P , which is constructed by
interchanging the first and fourth rows of an identity matrix that contains the same number
of rows as A. Suppose, for example, that A is a 5 × 5 matrix. The appropriate choice of P
would be

P �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

A similar technique is used to to find a permutation matrix P that exchanges columns of a
matrix.

The LU factorization of a matrix A ∈ IRn×n is defined as

P A � LU, (A.20)

where

P is an n × n permutation matrix (that is, it is obtained by rearranging the rows of
the n × n identity matrix),

L is unit lower triangular (that is, lower triangular with diagonal elements equal to 1,
and

U is upper triangular.

This factorization can be used to solve a linear system of the form Ax � b efficiently by the
following three-step process:

form b̃ � Pb by permuting the elements of b;

solve Lz � b̃ by performing triangular forward-substitution, to obtain the vector z;

A . 1 . E L E M E N T S O F L I N E A R A L G E B R A 607

solve U x � z by performing triangular back-substitution, to obtain the solution
vector x .

The factorization (A.20) can be found by using Gaussian elimination with row partial
pivoting, an algorithm that requires approximately 2n3/3 floating-point operations when A
is dense. Standard software that implements this algorithm (notably, LAPACK [7]) is readily
available. The method can be stated as follows.

Algorithm A.1 (Gaussian Elimination with Row Partial Pivoting).
Given A ∈ IRn×n ;
Set P ← I , L ← 0;
for i � 1, 2, . . . , n

find the index j ∈ {i, i + 1, . . . , n} such that |A ji | � maxk�i,i+1,...,n |Aki |;
if Ai j � 0

stop; (∗ matrix A is singular ∗)
if i 	� j

swap rows i and j of matrices A and L ;
(∗ elimination step ∗)
Lii ← 1;
for k � i + 1, i + 2, . . . , n

Lki ← Aki/Aii ;
for l � i + 1, i + 2, . . . , n

Akl ← Akl − Lki Ail ;
end (for)

end (if)
end (for)
U ← upper triangular part of A.

Variants of the basic algorithm allow for rearrangement of the columns as well as
the rows during the factorization, but these do not add to the practical stability properties
of the algorithm. Column pivoting may, however, improve the performance of Gaussian
elimination when the matrix A is sparse. by ensuring that the factors L and U are also
reasonably sparse.

Gaussian elimination can be applied also to the case in which A is not square. When
A is m×n, with m > n, the standard row pivoting algorithm produces a factorization of the
form (A.20), where L ∈ IRm×n is unit lower triangular and U ∈ IRn×n is upper triangular.
When m < n, we can find an LU factorization of AT rather than A, that is, we obtain

P AT �
[

L1

L2

]
U, (A.21)

where L1 is m ×m (square) unit lower triangular, U is m ×m upper triangular, and L2 is a
general (n−m)×m matrix. If A has full row rank, we can use this factorization to calculate

608 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

its null space explicitly as the space spanned by the columns of the matrix

M � PT

[
L−T

1 LT
2

−I

]
U−T . (A.22)

It is easy to check that M has dimensions n × (n − m) and that AM � 0.
When A ∈ IRn×n is symmetric positive definite, it is possible to compute a similar

but more specialized factorization at about half the cost—about n3/3 operations. This
factorization, known as the Cholesky factorization, produces a matrix L such that

A � L LT . (A.23)

(If we require L to have positive diagonal elements, it is uniquely defined by this formula.)
The algorithm can be specified as follows.

Algorithm A.2 (Cholesky Factorization).
Given A ∈ IRn×n symmetric positive definite;
for i � 1, 2, . . . , n;

Lii ←
√

Aii ;
for j � i + 1, i + 2, . . . , n

L ji ← A ji/Lii ;
for k � i + 1, i + 2, . . . , j

A jk ← A jk − L ji Lki ;
end (for)

end (for)
end (for)

Note that this algorithm references only the lower triangular elements of A; in fact,
it is only necessary to store these elements in any case, since by symmetry they are simply
duplicated in the upper triangular positions.

Unlike the case of Gaussian elimination, the Cholesky algorithm can produce a valid
factorization of a symmetric positive definite matrix without swapping any rows or columns.
However, symmetric permutation (that is, reordering the rows and columns in the same
way) can be used to improve the sparsity of the factor L . In this case, the algorithm produces
a permutation of the form

PT AP � L LT

for some permutation matrix P .
The Cholesky factorization can be used to compute solutions of the system Ax � b

by performing triangular forward- and back-substitutions with L and LT , respectively, as
in the case of L and U factors produced by Gaussian elimination.

A . 1 . E L E M E N T S O F L I N E A R A L G E B R A 609

The Cholesky factorization can also be used to verify positive definiteness of a sym-
metric matrix A. If Algorithm A.2 runs to completion with all Lii values well defined and
positive, then A is positive definite.

Another useful factorization of rectangular matrices A ∈ IRm×n has the form

AP � Q R, (A.24)

where

P is an n × n permutation matrix,

A is m × m orthogonal, and

R is m × n upper triangular.

In the case of a square matrix m � n, this factorization can be used to compute solutions of
linear systems of the form Ax � b via the following procedure:

set b̃ � QT b;

solve Rz � b̃ for z by performing back-substitution;

set x � PT z by rearranging the elements of x .

For a dense matrix A, the cost of computing the QR factorization is about 4m2n/3 operations.
In the case of a square matrix, the operation count is about twice as high as for an LU
factorization via Gaussian elimination. Moreover, it is more difficult to maintain sparsity in
a QR factorization than in an LU factorization.

Algorithms to perform QR factorization are almost as simple as algorithms for Gaus-
sian elimination and for Cholesky factorization. The most widely used algorithms work
by applying a sequence of special orthogonal matrices to A, known either as Householder
transformations or Givens rotations, depending on the algorithm. We omit the details, and
refer instead to Golub and Van Loan [136, Chapter 5] for a complete description.

In the case of a rectangular matrix A with m < n, we can use the QR factorization of
AT to find a matrix whose columns span the null space of A. To be specific, we write

AT P � Q R � [
Q1 Q2

]
R,

where Q1 consists of the first m columns of Q, and Q2 contains the last n−m columns. It is
easy to show that columns of the matrix Q2 span the null space of A. This procedure yields
a more satisfactory basis matrix for the null space than the Gaussian elimination procedure
(A.22), because the columns of Q2 are orthogonal to each other and have unit length. It
may be more expensive to compute, however, particularly in the case in which A is sparse.

When A has full column rank, we can make an identification between the R factor in
(A.24) and the Cholesky factorization. By multiplying the formula (A.24) by its transpose,

610 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

we obtain

PT AT AP � RT QT Q R � RT R,

and by comparison with (A.23), we see that RT is simply the Cholesky factor of the symmetric
positive definite matrix PT AT AP . Recalling that L is uniquely defined when we restrict its
diagonal elements to be positive, this observation implies that R is also uniquely defined
for a given choice of permutation matrix P , provided that we enforce positiveness of the
diagonals of R. Note, too, that since we can rearrange (A.24) to read AP R−1 � Q, we can
conclude that Q is also uniquely defined under these conditions.

Note that by definition of the Euclidean norm and the property (A.10), and the fact
that the Euclidean norms of the matrices P and Q in (A.24) are both 1, we have that

‖A‖ � ‖Q R PT ‖ ≤ ‖Q‖ ‖R‖ ‖PT ‖ � ‖R‖,

while

‖R‖ � ‖QT AP‖ ≤ ‖QT ‖ ‖A‖ ‖P‖ � ‖A‖.

We conclude from these two inequalities that ‖A‖ � ‖R‖. When A is square, we have by a
similar argument that ‖A−1‖ � ‖R−1‖. Hence the Euclidean-norm condition number of
A can be estimated by substituting R for A in the expression (A.11). This observation is
significant because various techniques are available for estimating the condition number of
triangular matrices R; see Golub and Van Loan [136, pp. 128–130] for a discussion.

SYMMETRIC INDEFINITE FACTORIZATION

When matrix A is symmetric but indefinite, Algorithm A.2 will break down by trying
to take the square root of a negative number. We can however produce a factorization,
similar to the Cholesky factorization, of the form

P APT � L BLT , (A.25)

where L is unit lower triangular, B is a block diagonal matrix with blocks of dimension 1 or
2, and P is a permutation matrix. The first step of this symmetric indefinite factorization
proceeds as follows. We identify a submatrix E of A that is suitable to be used as a pivot
block. The precise criteria that can be used to choose E are described below, but we note here
that E is either a single diagonal element of A (a 1× 1 pivot block), or else the 2× 2 block
consisting of two diagonal elements of A (say, aii and a j j) along with the corresponding
off-diagonal elements (that is, ai j and a ji). In either case, E must be nonsingular. We then

A . 1 . E L E M E N T S O F L I N E A R A L G E B R A 611

find a permutation matrix P1 that makes E a leading principal submatrix of A, that is,

P1 AP1 �
[

E CT

C H

]
, (A.26)

and then perform a block factorization on this rearranged matrix, using E as the pivot
block, to obtain

P1 APT
1 �

[
I 0

C E−1 I

][
E 0

0 H − C E−1CT

][
I E−1CT

0 I

]
.

The next step of the factorization consists in applying exactly the same process to H −
C E−1CT , known as the remaining matrix or the Schur complement, which has dimension
either (n− 1)× (n− 1) or (n− 2)× (n− 2). We now apply the same procedure recursively,
terminating with the factorization (A.25). Here P is defined as a product of the permutation
matrices from each step of the factorization, and B contains the pivot blocks E on its
diagonal.

The symmetric indefinite factorization requires approximately n3/3 floating-point
operations—the same as the cost of the Cholesky factorization of a positive definite matrix—
but to this count we must add the cost of identifying suitable pivot blocks E and of
performing the permutations, which can be considerable. There are various strategies for
determining the pivot blocks, which have an important effect on both the cost of the
factorization and its numerical properties. Ideally, our strategy for choosing E at each step
of the factorization procedure should be inexpensive, should lead to at most modest growth
in the elements of the remaining matrix at each step of the factorization, and should avoid
excessive fill-in (that is, L should not be too much more dense than A).

A well-known strategy, due to Bunch and Parlett [43], searches the whole remaining
matrix and identifies the largest-magnitude diagonal and largest-magnitude off-diagonal
elements, denoting their respective magnitudes by ξdia and ξoff . If the diagonal element
whose magnitude is ξdia is selected to be a 1 × 1 pivot block, the element growth in the
remaining matrix is bounded by the ratio ξdia/ξoff . If this growth rate is acceptable, we
choose this diagonal element to be the pivot block. Otherwise, we select the off-diagonal
element whose magnitude is ξoff (ai j , say), and choose E to be the 2 × 2 submatrix that
includes this element, that is,

E �
[

aii ai j

ai j a j j

]
.

This pivoting strategy of Bunch and Parlett is numerically stable and guarantees to yield a
matrix L whose maximum element is bounded by 2.781. Its drawback is that the evaluation
of ξdia and ξoff at each iteration requires many comparisons between floating-point numbers

612 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

to be performed: O(n3) in total during the overall factorization. Since each comparison costs
roughly the same as an arithmetic operation, this overhead is not insignificant.

The more economical pivoting strategy of Bunch and Kaufman [42] searches at most
two columns of the working matrix at each stage and requires just O(n2) comparisons in
total. Its rationale and details are somewhat tricky, and we refer the interested reader to the
original paper [42] or to Golub and Van Loan [136, Section 4.4] for details. Unfortunately,
this algorithm can give rise to arbitrarily large elements in the lower triangular factor L ,
making it unsuitable for use with a modified Cholesky strategy.

The bounded Bunch–Kaufman strategy is essentially a compromise between the
Bunch–Parlett and Bunch–Kaufman strategies. It monitors the sizes of elements in L , ac-
cepting the (inexpensive) Bunch–Kaufman choice of pivot block when it yields only modest
element growth, but searching further for an acceptable pivot when this growth is excessive.
Its total cost is usually similar to that of Bunch–Kaufman, but in the worst case it can
approach the cost of Bunch–Parlett.

So far, we have ignored the effect of the choice of pivot block E on the sparsity of the
final L factor. This consideration is important when the matrix to be factored is large and
sparse, since it greatly affects both the CPU time and the amount of storage required by the
algorithm. Algorithms that modify the strategies above to take account of sparsity have been
proposed by Duff et al. [97], Duff and Reid [95], and Fourer and Mehrotra [113].

SHERMAN–MORRISON–WOODBURY FORMULA

If the square nonsingular matrix A undergoes a rank-one update to become

Ā � A + abT ,

where a, b ∈ IRn , then if Ā is nonsingular, we have

Ā−1 � A−1 − A−1abT A−1

1+ bT A−1a
. (A.27)

It is easy to verify this formula: Simply multiply the definitions of Ā and Ā−1 together and
check that they produce the identity.

This formula can be extended to higher-rank updates. Let U and V be matrices in
IRn×p for some p between 1 and n. If we define

Â � A +U V T ,

then Â is nonsingular if and only if (I + V T A−1U) is nonsingular, and in this case we have

Â−1 � A−1 − A−1U (I + V T A−1U)−1V T A−1. (A.28)

A . 1 . E L E M E N T S O F L I N E A R A L G E B R A 613

We can use this formula to solve linear systems of the form Āx � d . Since

x � Â−1d � A−1d − A−1U (I + V T A−1U)−1V T A−1d,

we see that x can be found by solving p+1 linear systems with the matrix A (to obtain A−1d
and A−1U), inverting the p × p matrix I + V T A−1U , and performing some elementary
matrix algebra. Inversion of the p × p matrix I + V T A−1U is inexpensive when p � n.

INTERLACING EIGENVALUE THEOREM

The following result is proved for example in Golub and Van Loan [136,
Theorem 8.1.8].

Theorem A.1 (Interlacing Eigenvalue Theorem).
Let A ∈ IRn×n be a symmetric matrix with eigenvalues λ1, λ2, . . . , λn satisfying

λ1 ≥ λ2 ≥ · · · ≥ λn,

and let z ∈ IRn be a vector with ‖z‖ � 1, and α ∈ IR be a scalar. Then if we denote the
eigenvalues of A + αzzT by ξ1, ξ2, . . . , ξn (in decreasing order), we have for α > 0 that

ξ1 ≥ λ1 ≥ ξ2 ≥ λ2 ≥ ξ3 ≥ · · · ≥ ξn ≥ λn,

with

n∑
i�1

ξi − λi � α. (A.29)

If α < 0, we have that

λ1 ≥ ξ1 ≥ λ2 ≥ ξ2 ≥ λ3 ≥ · · · ≥ λn ≥ ξn,

where the relationship (A.29) is again satisfied.

Informally stated, the eigenvalues of the modified matrix “interlace” the eigenvalues of the
original matrix, with nonnegative adjustments if the coefficient α is positive, and nonpositive
adjustments if α is negative. The total magnitude of the adjustments equals α, whose
magnitude is identical to the Euclidean norm ‖αzzT ‖2 of the modification.

ERROR ANALYSIS AND FLOATING-POINT ARITHMETIC

In most of this book our algorithms and analysis deal with real numbers. Modern
digital computers, however, cannot store or compute with general real numbers. Instead,

614 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

they work with a subset known as floating-point numbers. Any quantities that are stored
on the computer, whether they are read directly from a file or program or arise as the
intermediate result of a computation, must be approximated by a floating-point number.
In general, then, the numbers that are produced by practical computation differ from those
that would be produced if the arithmetic were exact. Of course, we try to perform our
computations in such a way that these differences are as tiny as possible.

Discussion of errors requires us to distinguish between absolute error and relative
error. If x is some exact quantity (scalar, vector, matrix) and x̃ is its approximate value, the
absolute error is the norm of the difference, namely, ‖x − x̃‖. (In general, any of the norms
(A.2a), (A.2b), and (A.2c) can be used in this definition.) The relative error is the ratio of
the absolute error to the size of the exact quantity, that is,

‖x − x̃‖
‖x‖ .

When this ratio is significantly less than one, we can replace the denominator by the size of
the approximate quantity—that is, ‖x̃‖—without affecting its value very much.

Most computations associated with optimization algorithms are performed in double-
precision arithmetic. Double-precision numbers are stored in words of length 64 bits. Most
of these bits (say t) are devoted to storing the fractional part, while the remainder encode
the exponent e and other information, such as the sign of the number, or an indication of
whether it is zero or “undefined.” Typically, the fractional part has the form

.d1d2 . . . dt ,

where each di , i � 1, 2, . . . , t , is either zero or one. (In some systems d1 is implicitly assumed
to be 1 and is not stored.) The value of the floating-point number is then

t∑
i�1

di 2
−i × 2e.

The value 2−t−1 is known as unit roundoff and is denoted by u. Any real number whose
absolute value lies in the range [2L , 2U] (where L and U are lower and upper bounds on
the value of the exponent e) can be approximated to within a relative accuracy of u by a
floating-point number, that is,

fl(x) � x(1+ ε), where |ε| ≤ u, (A.30)

where fl(·) denotes floating-point approximation. The value of u for double-precision IEEE
arithmetic is about 1.1 × 10−16. In other words, if the real number x and its floating-point
approximation are both written as base-10 numbers (the usual fashion), they agree to at
least 15 digits.

A . 1 . E L E M E N T S O F L I N E A R A L G E B R A 615

For further information on floating-point computations, see Overton [233], Golub
and Van Loan [136, Section 2.4], and Higham [169].

When an arithmetic operation is performed with one or two floating-point numbers,
the result must also be stored as a floating-point number. This process introduces a small
roundoff error, whose size can be quantified in terms of the size of the arguments. If x and y
are two floating-point numbers, we have that

|fl(x ∗ y)− x ∗ y| ≤ u|x ∗ y|, (A.31)

where ∗ denotes any of the operations +, −, ×, ÷.
Although the error in a single floating-point operation appears benign, more signifi-

cant errors may occur when the arguments x and y are floating-point approximations of two
real numbers, or when a sequence of computations are performed in succession. Suppose,
for instance, that x and y are large real numbers whose values are very similar. When we
store them in a computer, we approximate them with floating-point numbers fl(x) and fl(y)
that satisfy

fl(x) � x + εx , fl(y) � y + εy, where |εx | ≤ u|x |, |εy| ≤ u|y|.

If we take the difference of the two stored numbers, we obtain a final result fl(fl(x)− fl(y))
that satisfies

fl(fl(x)− fl(y)) � (fl(x)− fl(y))(1+ εxy), where |εxy | ≤ u.

By combining these expressions, we find that the difference between this result and the true
value x − y may be as large as

εx + εy + εxy,

which is bounded by u(|x | + |y| + |x − y|). Hence, since x and y are large and close
together, the relative error is approximately 2u|x |/|x − y|, which may be quite large, since
|x | � |x − y|.

This phenomenon is known as cancellation. It can also be explained (less formally)
by noting that if both x and y are accurate to k digits, and if they agree in the first k̄
digits, then their difference will contain only about k− k̄ significant digits—the first k̄ digits
cancel each other out. This observation is the reason for the well-known adage of numerical
computing—that one should avoid taking the difference of two similar numbers if at all
possible.

616 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

CONDITIONING AND STABILITY

Conditioning and stability are two terms that are used frequently in connection with
numerical computations. Unfortunately, their meaning sometimes varies from author to
author, but the general definitions below are widely accepted, and we adhere to them in this
book.

Conditioning is a property of the numerical problem at hand (whether it is a linear
algebra problem, an optimization problem, a differential equations problem, or whatever).
A problem is said to be well conditioned if its solution is not affected greatly by small
perturbations to the data that define the problem. Otherwise, it is said to be ill conditioned.

A simple example is given by the following 2× 2 system of linear equations:

[
1 2

1 1

][
x1

x2

]
�
[

3

2

]
.

By computing the inverse of the coefficient matrix, we find that the solution is simply

[
x1

x2

]
�
[
−1 2

1 −1

][
3

2

]
�
[

1

1

]
.

If we replace the first right-hand-side element by 3.00001, the solution becomes (x1, x2)T �
(0.99999, 1.00001)T , which is only slightly different from its exact value (1, 1)T . We would
note similar insensitivity if we were to perturb the other elements of the right-hand-side or
elements of the coefficient matrix. We conclude that this problem is well conditioned. On
the other hand, the problem

[
1.00001 1

1 1

][
x1

x2

]
�
[

2.00001

2

]

is ill conditioned. Its exact solution is x � (1, 1)T , but if we change the first element of the
right-hand-side from 2.00001 to 2, the solution would change drastically to x � (0, 2)T .

For general square linear systems Ax � b where A ∈ IRn×n , the condition number of
the matrix (defined in (A.11)) can be used to quantify the conditioning. Specifically, if we
perturb A to Ã and b to b̃ and take x̃ to be the solution of the perturbed system Ãx̃ � b̃, it
can be shown that

‖x − x̃‖
‖x‖ ≈ κ(A)

[
‖A − Ã‖
‖A‖ + ‖b − b̃‖

‖b‖

]

(see, for instance, Golub and Van Loan [136, Section 2.7]). Hence, a large condition number
κ(A) indicates that the problem Ax � b is ill conditioned, while a modest value indicates
well conditioning.

A . 2 . E L E M E N T S O F A N A L Y S I S , G E O M E T R Y , T O P O L O G Y 617

Note that the concept of conditioning has nothing to do with the particular algorithm
that is used to solve the problem, only with the numerical problem itself.

Stability, on the other hand, is a property of the algorithm. An algorithm is stable if
it is guaranteed to produce accurate answers to all well-conditioned problems in its class,
even when floating-point arithmetic is used.

As an example, consider again the linear equations Ax � b. We can show that
Algorithm A.1, in combination with triangular substitution, yields a computed solution x̃
whose relative error is approximately

‖x − x̃‖
‖x‖ ≈ κ(A)

growth(A)

‖A‖ u, (A.32)

where growth(A) is the size of the largest element that arises in A during execution of
Algorithm A.1. In the worst case, we can show that growth(A)/‖A‖ may be around 2n−1,
which indicates that Algorithm A.1 is an unstable algorithm, since even for modest n (say,
n � 200), the right-hand-side of (A.32) may be large even when κ(A) is modest. In practice,
however, large growth factors are rarely observed, so we conclude that Algorithm A.1 is
stable for all practical purposes.

Gaussian elimination without pivoting, on the other hand, is definitely unstable. If
we omit the possible exchange of rows in Algorithm A.1, the algorithm will fail to produce
a factorization even of some well-conditioned matrices, such as

A �
[

0 1

1 2

]
.

For systems Ax � b in which A is symmetric positive definite, the Cholesky fac-
torization in combination with triangular substitution constitutes a stable algorithm for
producing a solution x .

A.2 ELEMENTS OF ANALYSIS, GEOMETRY, TOPOLOGY

SEQUENCES

Suppose that {xk} is a sequence of points belonging to IRn . We say that a sequence {xk}
converges to some point x , written limk→∞ xk � x , if for any ε > 0, there is an index K
such that

‖xk − x‖ ≤ ε, for all k ≥ K .

For example, the sequence {xk} defined by xk � (1− 2−k, 1/k2)T converges to (1, 0)T .

618 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

Given a index set S ⊂ {1, 2, 3, . . .}, we can define a subsequence of {tk} corresponding
to S , and denote it by {tk}k∈S .

We say that x̂ ∈ IRn is an accumulation point or limit point for {xk} if there is an infinite
set of indices k1, k2, k3, . . . such that the subsequence {xki }i�1,2,3,... converges to x̂ ; that is,

lim
i→∞

xki � x̂ .

Alternatively, we say that for any ε > 0 and all positive integers K , we have

‖xk − x‖ ≤ ε, for some k ≥ K .

An example is given by the sequence

[
1

1

]
,

[
1/2

1/2

]
,

[
1

1

]
,

[
1/4

1/4

]
,

[
1

1

]
,

[
1/8

1/8

]
, . . . , (A.33)

which has exactly two limit points: x̂ � (0, 0)T and x̂ � (1, 1)T . A sequence can even have
an infinite number of limit points. An example is the sequence xk � sin k, for which every
point in the interval [−1, 1] is a limit point. A sequence converges if and only if it has exactly
one limit point.

A sequence is said to be a Cauchy sequence if for any ε > 0, there exists an integer K
such that ‖xk − xl‖ ≤ ε for all indices k ≥ K and l ≥ K . A sequence converges if and only
if it is a Cauchy sequence.

We now consider scalar sequences {tk}, that is, tk ∈ IR for all k. This sequence is said
to be bounded above if there exists a scalar u such that tk ≤ u for all k, and bounded below
if there is a scalar v with tk ≥ v for all k. The sequence {tk} is said to be nondecreasing
if tk+1 ≥ tk for all k, and nonincreasing if tk+1 ≤ tk for all k. If {tk} is nondecreasing and
bounded above, then it converges, that is, limk→∞ tk � t for some scalar t . Similarly, if {tk}
is nonincreasing and bounded below, it converges.

We define the supremum of the scalar sequence {tk} as the smallest real number u such
that tk ≤ u for all k � 1, 2, 3, . . ., and denote it by sup{tk}. The infimum, denoted by inf{tk},
is the largest real number v such that v ≤ tk for all k � 1, 2, 3, We can now define the
sequence of suprema as {ui }, where

ui
def� sup{tk | k ≥ i}.

Clearly, {ui } is a nonincreasing sequence. If bounded below, it converges to a finite number
ū, which we call the “lim sup” of {tk}, denoted by lim sup tk . Similarly, we can denote the
sequence of infima by {vi }, where

vi
def� inf{tk | k ≥ i},

A . 2 . E L E M E N T S O F A N A L Y S I S , G E O M E T R Y , T O P O L O G Y 619

which is nondecreasing. If {vi } is bounded above, it converges to a point v̄ which we call the
“lim inf” of {tk}, denoted by lim inf tk . As an example, the sequence 1, 1

2 , 1, 1
4 , 1, 1

8 , . . . has
a lim inf of 0 and a lim sup of 1.

RATES OF CONVERGENCE

One of the key measures of performance of an algorithm is its rate of convergence.
Here, we define the terminology associated with different types of convergence.

Let {xk} be a sequence in IRn that converges to x∗. We say that the convergence is
Q-linear if there is a constant r ∈ (0, 1) such that

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ r, for all k sufficiently large. (A.34)

This means that the distance to the solution x∗ decreases at each iteration by at least a
constant factor bounded away from 1. For example, the sequence 1 + (0.5)k converges
Q-linearly to 1, with rate r � 0.5. The prefix “Q” stands for “quotient,” because this type of
convergence is defined in terms of the quotient of successive errors.

The convergence is said to be Q-superlinear if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ � 0.

For example, the sequence 1 + k−k converges superlinearly to 1. (Prove this statement!)
Q-quadratic convergence, an even more rapid convergence rate, is obtained if

‖xk+1 − x∗‖
‖xk − x∗‖2

≤ M, for all k sufficiently large,

where M is a positive constant, not necessarily less than 1. An example is the sequence
1+ (0.5)2k

.
The speed of convergence depends on r and (more weakly) on M , whose values depend

not only on the algorithm but also on the properties of the particular problem. Regardless of
these values, however, a quadratically convergent sequence will always eventually converge
faster than a linearly convergent sequence.

Obviously, any sequence that converges Q-quadratically also converges Q-super-
linearly, and any sequence that converges Q-superlinearly also converges Q-linearly. We
can also define higher rates of convergence (cubic, quartic, and so on), but these are less
interesting in practical terms. In general, we say that the Q-order of convergence is p (with
p > 1) if there is a positive constant M such that

‖xk+1 − x∗‖
‖xk − x∗‖p

≤ M, for all k sufficiently large.

620 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

Quasi-Newton methods for unconstrained optimization typically converge Q-
superlinearly, whereas Newton’s method converges Q-quadratically under appropriate
assumptions. In contrast, steepest descent algorithms converge only at a Q-linear rate,
and when the problem is ill-conditioned the convergence constant r in (A.34) is close to 1.

In the book, we omit the letter Q and simply talk about superlinear convergence,
quadratic convergence, and so on.

A slightly weaker form of convergence, characterized by the prefix “R” (for “root”), is
concerned with the overall rate of decrease in the error, rather than the decrease over each
individual step of the algorithm. We say that convergence is R-linear if there is a sequence of
nonnegative scalars {νk} such that

‖xk − x∗‖ ≤ νk for all k, and {νk} converges Q-linearly to zero.

The sequence {‖xk − x∗‖} is said to be dominated by {νk}. For instance, the sequence

xk �
{

1+ (0.5)k, k even,

1, k odd,
(A.35)

(the first few iterates are 2, 1, 1.25, 1, 1.03125, 1, . . .) converges R-linearly to 1, because we
have (1 + (0.5)k) − 1| � (0.)k , and the sequence {(0.5)k} converges Q-linearly to zero.
Likewise, we say that {xk} converges R-superlinearly to x∗ if {‖xk − x∗‖} is dominated by a
sequence of scalars converging Q-superlinearly to zero, and {xk} converges R-quadratically
to x∗ if {‖xk − x∗‖} is dominated by a sequence converging Q-quadratically to zero.

Note that in the R-linear sequence (A.35), the error actually increases at every second
iteration! Such behavior occurs even in sequences whose R-rate of convergence is arbitrarily
high, but it cannot occur for Q-linear sequences, which insist on a decrease at every step k,
for k sufficiently large.

For an extensive discussion of convergence rates see Ortega and Rheinboldt [230].

TOPOLOGY OF THE EUCLIDEAN SPACE IRn

The set F is bounded if there is some real number M > 0 such that

‖x‖ ≤ M, for all x ∈ F .

A subset F ⊂ IRn is open if for every x ∈ F , we can find a positive number ε > 0 such that
the ball of radius ε around x is contained in F ; that is,

{y ∈ IRn | ‖y − x‖ ≤ ε} ⊂ F .

The set F is closed if for all possible sequences of points {xk} in F , all limit points of {xk}
are elements of F . For instance, the set F � (0, 1) ∪ (2, 10) is an open subset of IR, while

A . 2 . E L E M E N T S O F A N A L Y S I S , G E O M E T R Y , T O P O L O G Y 621

F � [0, 1]∪ [2, 5] is a closed subset of IR. The set F � (0, 1] is a subset of IR that is neither
open nor closed.

The interior of a set F , denoted by int F , is the largest open set contained in F . The
closure of F , denoted by cl F , is the smallest closed set containing F . In other words, we
have

x ∈ clF if limk→∞ xk � x for some sequence {xk} of points in F .

If F � (−1, 1] ∪ [2, 4), then

clF � [−1, 1] ∪ [2, 4], int F � (−1, 1) ∪ (2, 4).

Note that if F is open, then int F � F , while if F is closed, then cl F � F .
We note the following facts about open and closed sets. The union of finitely many

closed sets is closed, while any intersection of closed sets is closed. The intersection of finitely
many open sets is open, while any union of open sets is open.

The set F is compact if every sequence {xk} of points in F has at least one limit point,
and all such limit points are in F . (This definition is equivalent to the more formal one
involving covers of F .) The following is a central result in topology:

F ∈ IRn is closed and bounded ⇒ F is compact.

Given a point x ∈ IRn , we callN ∈ IRn a neighborhood of x if it is an open set containing
x . An especially useful neighborhood is the open ball of radius ε around x , which is denoted
by IB(x, ε); that is,

IB(x, ε) � {y | ‖y − x‖ < ε}.

Given a set F ⊂ IRn , we say that N is a neighborhood of F if there is ε > 0 such that

∪x∈F IB(x, ε) ⊂ N .

CONVEX SETS IN IRn

A convex combination of a finite set of vectors {x1, x2, . . . , xm} in IRm is any vector x
of the form

x �
m∑

i�1

αi xi , where
m∑

i�1

αi � 1, and αi ≥ 0 for all i � 1, 2, . . . , m.

The convex hull of {x1, x2, . . . , xm} is the set of all convex combinations of these vectors.
A cone is a set F with the property that for all x ∈ F we have

x ∈ F ⇒ αx ∈ F , for all α > 0. (A.36)

622 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

For instance, the set F ⊂ IR2 defined by

{(x1, x2)T | x1 > 0, x2 ≥ 0}

is a cone in IR2. Note that cones are not necessarily convex. For example, the set
{(x1, x2)T | x1 ≥ 0 or x2 ≥ 0}, which encompasses three quarters of the two-dimensional
plane, is a cone.

The cone generated by {x1, x2, . . . , xm} is the set of all vectors x of the form

x �
m∑

i�1

αi xi , where αi ≥ 0 for all i � 1, 2, . . . , m.

Note that all cones of this form are convex.
Finally, we define the affine hull and relative interior of a set. An affine set in IRn is a

the set of all vectors {x} ⊕ S , where x ∈ IRn and S is a subspace of IRn . Given F ⊂ IRn ,
the affine hull of F (denoted by affF) is the smallest affine set containing F . For instance,
when F is the “ice-cream cone” defined in three dimensions as

� �
{

x ∈ IR3 | x3 ≥ 2
√

x2
1 + x2

2

}
(A.37)

(see Figure A.1), we have affF � IR3. If F is the set of two isolated points F �
{(1, 0, 0)T , (0, 2, 0)T }, we have

affF � {(1, 0, 0)T + α(−1, 2, 0)T | for all α ∈ IR}.

x

x

x

1

2

3

Figure A.1 “Ice-cream cone” set.

A . 2 . E L E M E N T S O F A N A L Y S I S , G E O M E T R Y , T O P O L O G Y 623

The relative interior riF of the set F is its interior relative to affF . If x ∈ F , then
x ∈ riF if there is an ε > 0 such that

(x + εB) ∩ affF ⊂ F .

Referring again to the ice-cream cone (A.37), we have that

riF �
{

x ∈ IR3

∣∣∣∣ x3 > 2
√

x2
1 + x2

2

}
.

For the set of two isolated points F � {(1, 0, 0)T , (0, 2, 0)T }, we have riF � ∅. For the set
F defined by

F def� {x ∈ IR3 | x1 ∈ [0, 1], x2 ∈ [0, 1], x3 � 0},

we have that

affF � IR × IR × {0}, riF � {x ∈ IR3 | x1 ∈ (0, 1), x2 ∈ (0, 1), x3 � 0}.

CONTINUITY AND LIMITS

Let f be a function that maps some domain D ⊂ IRn to the space IRm . For some point
x0 ∈ clD, we write

lim
x→x0

f (x) � f0 (A.38)

(spoken “the limit of f (x) as x approaches x0 is f0”) if for all ε > 0, there is a value δ > 0
such that

‖x − x0‖ < δ and x ∈ D ⇒ ‖ f (x)− f0‖ < ε.

We say that f is continuous at x0 if x0 ∈ D and the expression (A.38) holds with f0 � f (x0).
We say that f is continuous on its domain D if f is continuous for all x0 ∈ D.

An example is provided by the function

f (x) �
{
−x if x ∈ [−1, 1], x 	� 0,

5 for all other x ∈ [−10, 10].
(A.39)

This function is defined on the domain [−10, 10] and is continuous at all points of the
domain except the points x � 0, x � 1, and x � −1. At x � 0, the expression (A.38) holds
with f0 � 0, but the function is not continuous at this point because f0 	� f (0) � 5. At

624 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

x � −1, the limit (A.38) is not defined, because the function values in the neighborhood of
this point are close to both 5 and −1, depending on whether x is slightly smaller or slightly
larger than −1. Hence, the function is certainly not continuous at this point. The same
comments apply to the point x � 1.

In the special case of n � 1 (that is, the argument of f is a real scalar), we can also
define the one-sided limit. Given x0 ∈ clD, We write

lim
x↓x0

f (x) � f0 (A.40)

(spoken “the limit of f (x) as x approaches x0 from above is f0”) if for all ε > 0, there is a
value δ > 0 such that

x0 < x < x0 + δ and x ∈ D ⇒ ‖ f (x)− f0‖ < ε.

Similarly, we write

lim
x↑x0

f (x) � f0 (A.41)

(spoken “the limit of f (x) as x approaches x0 from below is f0”) if for all ε > 0, there is a
value δ > 0 such that

x0 − δ < x < x0 and x ∈ D ⇒ ‖ f (x)− f0‖ < ε.

For the function defined in (A.39), we have that

lim
x↓1

f (x) � 5, lim
x↑1

f (x) � 1.

Considering again the general case of f : D → IRm where D ⊂ IRn for general m and
n. The function f is said to be Lipschitz continuous on some set N ⊂ D if there is a constant
L > 0 such that

‖ f (x1)− f (x0)‖ ≤ L‖x1 − x0‖, for all x0, x1 ∈ N . (A.42)

(L is called the Lipschitz constant.) The function f is locally Lipschitz continuous at a point
x̄ ∈ intD if there is some neighborhood N of x̄ with N ⊂ D such that the property (A.42)
holds for some L > 0.

If g and h are two functions mapping D ⊂ IRn to IRm , Lipschitz continuous on a
set N ⊂ D, their sum g + h is also Lipschitz continuous, with Lipschitz constant equal to
the sum of the Lipschitz constants for g and h individually. If g and h are two functions
mapping D ⊂ IRn to IR, the product gh is Lipschitz continuous on a set N ⊂ D if both g
and h are Lipschitz continuous on N and both are bounded on N (that is, there is M > 0

A . 2 . E L E M E N T S O F A N A L Y S I S , G E O M E T R Y , T O P O L O G Y 625

such that |g(x)| ≤ M and |h(x)| ≤ M for all x ∈ N). We prove this claim via a sequence
of elementary inequalities, for arbitrary x0, x1 ∈ N :

|g(x0)h(x0)− g(x1)h(x1)|
≤ |g(x0)h(x0)− g(x1)h(x0)| + |g(x1)h(x0)− g(x1)h(x1)|
� |h(x0)| |g(x0)− g(x1)| + |g(x1)| |h(x0)− h(x1)|
≤ 2M L‖x0 − x1‖, (A.43)

where L is an upper bound on the Lipschitz constant for both g and h.

DERIVATIVES

Let φ : IR → IR be a real-valued function of a real variable (sometimes known as a
univariate function). The first derivative φ′(α) is defined by

dφ

dα
� φ′(α)

def� lim
ε→0

φ(α + ε)− φ(α)

ε
. (A.44)

The second derivative is obtained by substituting φ by φ′ in this same formula; that is,

d2φ

dα2
� φ′′(α)

def� lim
ε→0

φ′(α + ε)− φ′(α)

ε
. (A.45)

Suppose now that α in turn depends on another quantity β (we denote this dependence by
writing α � α(β)). We can use the chain rule to calculate the derivative of φ with respect to
β:

dφ(α(β))

dβ
� dφ

dα

dα

dβ
� φ′(α)α′(β). (A.46)

Consider now the function f : IRn → IR, which is a real-valued function of n
independent variables. We typically gather the variables into a vector x � (x1, x2, . . . , xn)T .
We say that f is differentiable at x if there exists a vector g ∈ IRn such that

lim
y→0

f (x + y)− f (x)− gT y

‖y‖ � 0, (A.47)

where ‖ · ‖ is any vector norm of y. (This type of differentiability is known as Frechet
differentiability.) If g satisfying (A.47) exists, we call it the gradient of f at x , and denote it

626 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

by ∇ f (x), written componentwise as

∇ f (x) �

⎡
⎢⎢⎢⎢⎢⎣

∂ f

∂x1

...

∂ f

∂xn

⎤
⎥⎥⎥⎥⎥⎦ . (A.48)

Here, ∂ f/∂xi represents the partial derivative of f with respect to xi . By setting y � εei in
(A.47), where ei is the vector in IRn consisting all all zeros, except for a 1 in position i , we
obtain

∂ f

∂xi

def� lim
ε→0

f (x1, . . . , xi−1, xi + ε, xi+1, . . . , xn)− f (x1, . . . , xi−1, xi , xi+1, . . . , xn)

ε

� f (x + εei)− f (x)

ε
.

A gradient with respect to only a subset of the unknowns can be expressed by means
of a subscript on the symbol∇. Thus for the function of two vector variables f (z, t), we use
∇z f (z, t) to denote the gradient with respect to z (holding t constant).

The matrix of second partial derivatives of f is known as the Hessian, and is defined
as

∇2 f (x) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2 f

∂x2
1

∂2 f

∂x1∂x2
· · · ∂2 f

∂x1∂xn

∂2 f

∂x2∂x1

∂2 f

∂x2
2

· · · ∂2 f

∂x2∂xn

...
...

...

∂2 f

∂xn∂x1

∂2 f

∂xn∂x2
· · · ∂2 f

∂x2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We say that f is differentiable on a domain D if∇ f (x) exists for all x ∈ D, and continuously
differentiable if∇ f (x) is a continuous functions of x . Similarly, f is twice differentiable onD
if ∇2 f (x) exists for all x ∈ D and twice continuously differentiable if ∇2 f (x) is continuous
on D. Note that when f is twice continuously differentiable, the Hessian is a symmetric
matrix, since

∂2 f

∂xi∂x j
� ∂2 f

∂x j∂xi
, for all i, j � 1, 2, . . . , n.

When f is a vector valued function that is f : IRn → IRm (See Chapters 10 and 11),
we define∇ f (x) to be the n×m matrix whose i th column is∇ fi (x), that is, the gradient of

A . 2 . E L E M E N T S O F A N A L Y S I S , G E O M E T R Y , T O P O L O G Y 627

fi with respect to x . Often, for notational convenience, we prefer to work with the transpose
of his matrix, which has dimensions m × n. This matrix is called the Jacobian and is often
denoted by J (x). Specifically, the (i, j) element of J (x) is ∂ fi (x)/∂x j .

When the vector x in turn depends on another vector t (that is, x � x(t)), we can
extend the chain rule (A.46) for the univariate function. Defining

h(t) � f (x(t)), (A.49)

we have

∇h(t) �
n∑

i�1

∂ f

∂xi
∇xi (t) � ∇x(t)∇ f (x(t)). (A.50)

❏ EXAMPLE A.1

Let f : IR2 → IR be defined by f (x1, x2) � x2
1 + x1x2, where x1 � sin t1 + t2

2 and
x2 � (t1 + t2)2. Defining h(t) as in (A.49), the chain rule (A.50) yields

∇h(t)

�
n∑

i�1

∂ f

∂xi
∇xi (t)

� (2x1 + x2)

[
cos t1

2t2

]
+ x1

[
2(t1 + t2)

2(t1 + t2)

]

� (
2
(
sin t1 + t2

2

)+ (t1 + t2)2
) [cos t1

2t2

]
+ (

sin t1 + t2
2

) [2(t1 + t2)

2(t1 + t2)

]
.

If, on the other hand, we substitute directly for x into the definition of f , we obtain

h(t) � f (x(t)) � (
sin t1 + t2

2

)2 + (
sin t1 + t2

2

)
(t1 + t2)2.

The reader should verify that the gradient of this expression is identical to the one obtained
above by applying the chain rule.

❐

Special cases of the chain rule can be derived when x(t) in (A.50) is a linear function
of t , say x(t) � Ct . We then have ∇x(t) � CT , so that

∇h(t) � CT∇ f (Ct).

628 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

In the case in which f is a scalar function, we can differentiate twice using the chain rule to
obtain

∇2h(t) � CT∇2 f (Ct)C.

(The proof of this statement is left as an exercise.)

DIRECTIONAL DERIVATIVES

The directional derivative of a function f : IRn → IR in the direction p is given by

D(f (x); p)
def� lim

ε→0

f (x + εp)− f (x)

ε
. (A.51)

The directional derivative may be well defined even when f is not continuously differen-
tiable; in fact, it is most useful in such situations. Consider for instance the �1 norm function
f (x) � ‖x‖1. We have from the definition (A.51) that

D(‖x‖1; p) � lim
ε→0

‖x + εp‖1 − ‖x‖1

ε
� lim

ε→0

∑n
i�1 |xi + εpi | −

∑n
i�1 |xi |

ε
.

If xi > 0, we have |xi + εpi | � |xi | + εpi for all ε sufficiently small. If xi < 0, we have
|xi + εpi | � |xi | − εpi , while if xi � 0, we have |xi + εpi | � ε|pi |. Therefore, we have

D(‖x‖1; p) �
∑

i |xi <0

−pi +
∑

i |xi >0

pi +
∑

i |xi�0

|pi |,

so the directional derivative of this function exists for any x and p. The first derivative
∇ f (x) does not exist, however, whenever any of the components of x are zero.

When f is in fact continuously differentiable in a neighborhood of x , we have

D(f (x); p) � ∇ f (x)T p.

To verify this formula, we define the function

φ(α) � f (x + αp) � f (y(α)), (A.52)

where y(α) � x + αp. Note that

lim
ε→0

f (x + εp)− f (x)

ε
� lim

ε→0

φ(ε)− φ(0)

ε
� φ′(0).

A . 2 . E L E M E N T S O F A N A L Y S I S , G E O M E T R Y , T O P O L O G Y 629

By applying the chain rule (A.50) to f (y(α)), we obtain

φ′(α) �
n∑

i�1

∂ f (y(α))

∂yi
∇ yi (α) (A.53)

�
n∑

i�1

∂ f (y(α))

∂yi
pi � ∇ f (y(α))T p � ∇ f (x + αp)T p.

We obtain (A.51) by setting α � 0 and comparing the last two expressions.

MEAN VALUE THEOREM

We now recall the mean value theorem for univariate functions. Given a continuously
differentiable function φ : IR → IR and two real numbers α0 and α1 that satisfy α1 > α0, we
have that

φ(α1) � φ(α0)+ φ′(ξ)(α1 − α0) (A.54)

for some ξ ∈ (α0, α1). An extension of this result to a multivariate function f : IRn → IR is
that for any vector p we have

f (x + p) � f (x)+∇ f (x + αp)T p, (A.55)

for some α ∈ (0, 1). (This result can be proved by defining φ(α) � f (x + αp), α0 � 0, and
α1 � 1 and applying the chain rule, as above.)

❏ EXAMPLE A.2

Consider f : IR2 → IR defined by f (x) � x3
1 + 3x1x2

2 , and let x � (0, 0)T and
p � (1, 2)T . It is easy to verify that f (x) � 0 and f (x + p) � 13. Since

∇ f (x + αp) �
[

3(x1 + αp1)2 + 3(x2 + αp2)2

6(x1 + αp1)(x2 + αp2)

]
�
[

15α2

12α2

]
,

we have that ∇ f (x + αp)T p � 39α2. Hence the relation (A.55) holds when we set α �
1/
√

13, which lies in the open interval (0, 1), as claimed.
❐

630 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

An alternative expression to (A.55) can be stated for twice differentiable functions:
We have

f (x + p) � f (x)+∇ f (x)T p + 1

2
pT∇2 f (x + αp)T p, (A.56)

for some α ∈ (0, 1). In fact, this expression is one form of Taylor’s theorem, Theorem 2.1 in
Chapter 2, to which we refer throughout the book.

The extension of (A.55) to a vector-valued function r : IRn → IRm for m > 1 is
not immediate. There is in general no scalar α such that the natural extension of (A.55) is
satisfied. However, the following result is often a useful analog. As in (10.3), we denote the
Jacobian of r(x), by J (x), where J (x) is the m × n matrix whose (j, i) entry is ∂r j/∂xi , for
j � 1, 2, . . . , m and i � 1, 2, . . . , n, and asssume that J (x) is defined and continuous on
the domain of interest. Given x and p, we then have

r(x + p)− r(x) �
∫ 1

0
J (x + αp)p dα. (A.57)

When p is sufficiently small in norm, we can approximate the right-hand side of this
expression adequately by J (x)p, that is,

r(x + p)− r(x) ≈ J (x)p.

If J is Lipschitz continuous in the vicinity of x and x + p with Lipschitz constant L , we can
use (A.12) to estimate the error in this approximation as follows:

‖r(x + p)− r(x)− J (x)p‖ �
∥∥∥∥
∫ 1

0
[J (x + αp)− J (x)]p dα

∥∥∥∥
≤
∫ 1

0
‖J (x + αp)− J (x)‖ ‖p‖ dα

≤
∫ 1

0
Lα‖p‖2 dα � 1

2 L‖p‖2.

IMPLICIT FUNCTION THEOREM

The implicit function theorem lies behind a number of important results in local
convergence theory of optimization algorithms and in the characterization of optimality
(see Chapter 12). Our statement of this result is based on Lang [187, p. 131] and Bertsekas [19,
Proposition A.25].

A . 2 . E L E M E N T S O F A N A L Y S I S , G E O M E T R Y , T O P O L O G Y 631

Theorem A.2 (Implicit Function Theorem).
Let h : IRn × IRm → IRn be a function such that

(i) h(z∗, 0) � 0 for some z∗ ∈ IRn ,

(ii) the function h(·, ·) is continuously differentiable in some neighborhood of (z∗, 0), and

(iii) ∇zh(z, t) is nonsingular at the point (z, t) � (z∗, 0).

Then there exist open sets Nz ⊂ IRn and Nt ⊂ IRm containing z∗ and 0, respectively, and a
continuous function z : Nt → Nz such that z∗ � z(0) and h(z(t), t) � 0 for all t ∈ Nt .
Further, z(t) is uniquely defined. Finally, if h is p times continuously differentiable with respect
to both its arguments for some p > 0, then z(t) is also p times continuously differentiable with
respect to t , and we have

∇z(t) � −∇t h(z(t), t)[∇zh(z(t), t)]−1

for all t ∈ Nt .

This theorem is frequently applied to parametrized systems of linear equations, in
which z is obtained as the solution of

M(t)z � g(t),

where M(·) ∈ IRn×n has M(0) nonsingular, and g(·) ∈ IRn . To apply the theorem, we define

h(z, t) � M(t)z − g(t).

If M(·) and g(·) are continuously differentiable in some neighborhood of 0, the theorem
implies that z(t) � M(t)−1g(t) is a continuous function of t in some neighborhood of 0.

ORDER NOTATION

In much of our analysis we are concerned with how the members of a sequence behave
eventually, that is, when we get far enough along in the sequence. For instance, we might
ask whether the elements of the sequence are bounded, or whether they are similar in size
to the elements of a corresponding sequence, or whether they are decreasing and, if so,
how rapidly. Order notation is useful shorthand to use when questions like these are being
examined. It saves us defining many constants that clutter up the argument and the analysis.

We will use three varieties of order notation: O(·), o(·), and �(·). Given two
nonnegative infinite sequences of scalars {ηk} and {νk}, we write

ηk � O(νk)

632 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

if there is a positive constant C such that

|ηk | ≤ C |νk |

for all k sufficiently large. We write

ηk � o(νk)

if the sequence of ratios {ηk/νk} approaches zero, that is,

lim
k→∞

ηk

νk
� 0.

Finally, we write

ηk � �(νk)

if there are two constants C0 and C1 with 0 < C0 ≤ C1 < ∞ such that

C0|νk | ≤ |ηk | ≤ C1|νk |,

that is, the corresponding elements of both sequences stay in the same ballpark for all k.
This definition is equivalent to saying that ηk � O(νk) and νk � O(ηk).

The same notation is often used in the context of quantities that depend continuously
on each other as well. For instance, if η(·) is a function that maps IR to IR, we write

η(ν) � O(ν)

if there is a constant C such that |η(ν)| ≤ C |ν| for all ν ∈ IR. (Typically, we are interested
only in values of ν that are either very large or very close to zero; this should be clear from
the context. Similarly, we use

η(ν) � o(ν) (A.58)

to indicate that the ratio η(ν)/ν approaches zero either as ν → 0 or ν → ∞. (Again, the
precise meaning should be clear from the context.)

As a slight variant on the definitions above, we write

ηk � O(1)

to indicate that there is a constant C such that |ηk | ≤ C for all k, while

ηk � o(1)

A . 2 . E L E M E N T S O F A N A L Y S I S , G E O M E T R Y , T O P O L O G Y 633

indicates that limk→∞ ηk � 0. We sometimes use vector and matrix quantities as arguments,
and in these cases the definitions above are intended to apply to the norms of these quantities.
For instance, if f : IRn → IRn , we write f (x) � O(‖x‖) if there is a constant C > 0 such
that ‖ f (x)‖ ≤ C‖x‖ for all x in the domain of f . Typically, as above, we are interested only
in some subdomain of f , usually a small neighborhood of 0. As before, the precise meaning
should be clear from the context.

ROOT-FINDING FOR SCALAR EQUATIONS

In Chapter 11 we discussed methods for finding solutions of nonlinear systems of
equations F(x) � 0, where F : IRn → IRn . Here we discuss briefly the case of scalar
equations (n � 1), for which the algorithm is easy to illustrate. Scalar root-finding is needed
in the trust-region algorithms of Chapter 4, for instance. Of course, the general theorems of
Chapter 11 can be applied to derive rigorous convergence results for this special case.

The basic step of Newton’s method (Algorithm Newton of Chapter 11) in the scalar
case is simply

pk � −F(xk)/F ′(xk), xk+1 ← xk + pk (A.59)

(cf. (11.6)). Graphically, such a step involves taking the tangent to the graph of F at the
point xk and taking the next iterate to be the intersection of this tangent with the x axis
(see Figure A.2). Clearly, if the function F is nearly linear, the tangent will be quite a good
approximation to F itself, so the Newton iterate will be quite close to the true root of F .

xkxk+1

xkF()

tangent

Figure A.2 One step of Newton’s method for a scalar equation.

634 A P P E N D I X A . B A C K G R O U N D M A T E R I A L

xkxk+1

xk+2

secant

Figure A.3 One step of the secant method for a scalar equation.

The secant method for scalar equations can be viewed as the specialization of Broyden’s
method to the case of n � 1. The issues are simpler in this case, however, since the secant
equation (11.27) completely determines the value of the 1 × 1 approximate Hessian Bk .
That is, we do not need to apply extra conditions to ensure that Bk is fully determined. By
combining (11.24) with (11.27), we find that the secant method for the case of n � 1 is
defined by

Bk � (F(xk)− F(xk−1))/(xk − xk−1), (A.60a)

pk � −F(xk)/Bk, xk+1 � xk + pk . (A.60b)

By illustrating this algorithm, we see the origin of the term “secant.” Bk approximates the
slope of the function at xk by taking the secant through the points (xk−1, F(xk−1) and
(xk, F(xk)), and xk+1 is obtained by finding the intersection of this secant with the x axis.
The method is illustrated in Figure A.3.

This is page 635
Printer: Opaque this

A P P E N D I X B
A Regularization
Procedure

The following algorithm chooses parameters δ, γ that guarantee that the regularized primal-
dual matrix (19.25) is nonsingular and satisfies the inertia condition (19.24). The algorithm
assumes that, at the beginning of the interior-point iteration, δold has been initialized to
zero.

Algorithm B.1 (Inertia Correction and Regularization).
Given the current barrier parameter µ, constants η > 0 and β < 1, and the

perturbation δold used in the previous interior-point iteration.

636 A P P E N D I X B . A R E G U L A R I Z A T I O N P R O C E D U R E

Factor (19.25) with δ � γ � 0.
if (19.25) is nonsingular and its inertia is (n + m, l + m, 0)

compute the primal-dual step; stop;
if (19.25) has zero eigenvalues

set γ ← 10−8ηµβ ;
if δold � 0

set δ ← 10−4;

else
set δ ← δold/2;

repeat
Factor the modified matrix (19.25);
if the inertia is (n + m, l + m, 0)

Set δold ← δ;
Compute the primal-dual step (19.12) using the coefficient

matrix (19.25); stop;
else

Set δ ← 10δ;
end (repeat)

This algorithm has been adapted from a more elaborate procedure described by
Wächter and Biegler [301]. All constants used in the algorithm are arbitrary; we have pro-
vided typical choices. The algorithm aims to avoid unnecessarily large modifications δ I of
∇2

xxLwhile trying to minimize the number of matrix factorizations. Excessive modifications
degrade the performance of the algorithm because they erase the second derivative informa-
tion contained in ∇2

xxL, and cause the step to take on steepest-descent like characteristics.
The first trial value (δ � δold/2) is based on the previous modification δold because the
minimum perturbation δ required to achieve the desired inertia will often not vary much
from one interior-point iteration to the next.

The heuristics implemented in Algorithm B.1 provide an alternative to those employed
in Algorithm 7.3, which were presented in the context of unconstrained optimization. We
emphasize, however, that all of these are indeed heuristics and may not always provide
adequate safeguards.

This is page 637
Printer: Opaque this

References

[1] R. K. AHUJA, T. L. MAGNANTI, AND J. B. ORLIN, Network Flows: Theory, Algorithms, and
Applications, Prentice-Hall, Englewood Cliffs, N.J., 1993.

[2] H. AKAIKE, On a successive transformation of probability distribution and its application to the
analysis of the optimum gradient method, Annals of the Institute of Statistical Mathematics, 11
(1959), pp. 1–17.

[3] M. AL-BAALI, Descent property and global convergence of the Fletcher-Reeves method with inexact
line search, I.M.A. Journal on Numerical Analysis, 5 (1985), pp. 121–124.

[4] E. D. ANDERSEN AND K. D. ANDERSEN, Presolving in linear programming, Mathematical
Programming, 71 (1995), pp. 221–245.

[5] , The MOSEK interior point optimizer for linear programming: an implementation of
the homogeneous algorithm, in High Performance Optimization, T. T. H. Frenk, K. Roos and
S. Zhang, eds., Kluwer Academic Publishers, 2000, pp. 197–232.

[6] E. D. ANDERSEN, J. GONDZIO, C. MÉSZÁROS, AND X. XU, Implementation of interior-point methods
for large scale linear programming, in Interior Point Methods in Mathematical Programming,
T. Terlaky, ed., Kluwer, 1996, ch. 6, pp. 189–252.

[7] E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. DONGARRA, J. DU CROZ, A. GREENBAUM, S. HAM-
MARLING, A. MCKENNEY, S. OSTROUCHOV, AND D. SORENSEN, LAPACK User’s Guide, SIAM,
Philadelphia, 1992.

638 R E F E R E N C E S

[8] M. ANITESCU, On solving mathematical programs with complementarity constraints as nonlinear
programs, SIAM Journal on Optimization, 15 (2005), pp. 1203–1236.

[9] ARKI CONSULTING AND DEVELOPMENT A/S, CONOPT version 3, 2004.

[10] B. M. AVERICK, R. G. CARTER, J. J. MORÉ, AND G. XUE, The MINPACK-2 test problem collection,
Preprint MCS–P153–0692, Argonne National Laboratory, 1992.

[11] P. BAPTIST AND J. STOER, On the relation between quadratic termination and convergence properties
of minimization algorithms, Part II: Applications, Numerische Mathematik, 28 (1977), pp. 367–
392.

[12] R. H. BARTELS AND G. H. GOLUB, The simplex method of linear programming using LU
decomposition, Communications of the ACM, 12 (1969), pp. 266–268.

[13] R. BARTLETT AND L. BIEGLER, rSQP++: An object-oriented framework for successive quadratic
programming, in Large-Scale PDE-Constrained Optimization, L. T. Biegler, O. Ghat-
tas, M. Heinkenschloss, and B. van Bloemen Waanders, eds., vol. 30, New York, 2003,
Springer-Verlag, pp. 316–330. Lecture Notes in Computational Science and Engineering.

[14] M. BAZARAA, H. SHERALI, AND C. SHETTY, Nonlinear Programming, Theory and Applications.,
John Wiley & Sons, New York, second ed., 1993.

[15] A. BEN-TAL AND A. NEMIROVSKI, Lectures on Modern Convex Optimization: Analysis, Algorithms,
and Engineering Applications, MPS-SIAM Series on Optimization, SIAM, 2001.

[16] H. Y. BENSON, A. SEN, D. F. SHANNO, AND R. J. VANDERBEI, Interior-point algorithms, penalty
methods and equilibrium problems, Technical Report ORFE-03-02, Operations Research and
Financial Engineering, Princeton University, 2003.

[17] S. BENSON AND J. MORÉ, A limited-memory variable-metric algorithm for bound constrained
minimization, Numerical Analysis Report P909-0901, ANL, Argonne, IL, USA, 2001.

[18] D. P. BERTSEKAS, Constrained Optimization and Lagrange Multiplier Methods, Academic Press,
New York, 1982.

[19] , Nonlinear Programming, Athena Scientific, Belmont, MA, second ed., 1999.

[20] M. BERZ, C. BISCHOF, C. F. CORLISS, AND A. GRIEWANK, eds., Computational Differentiation:
Techniques, Applications, and Tools, SIAM Publications, Philadelphia, PA, 1996.

[21] J. BETTS, S. K. ELDERSVELD, P. D. FRANK, AND J. G. LEWIS, An interior-point nonlinear programming
algorithm for large scale optimization, Technical report MCT TECH-003, Mathematics and
Computing Technology, The Boeing Company, P.O. Box 3707, Seattle, WA 98124-2207, 2000.

[22] J. R. BIRGE AND F. LOUVEAUX, Introduction to Stochastic Programming, Springer-Verlag, New
York, 1997.

[23] E. G. BIRGIN, J. M. MARTINEZ, AND M. RAYDAN, Algorithm 813: SPG software for convex-constrained
optimization, ACM Transactions on Mathematical Software, 27 (2001), pp. 340–349.

[24] C. BISCHOF, A. BOUARICHA, P. KHADEMI, AND J. J. MORÉ, Computing gradients in large-scale
optimization using automatic differentiation, INFORMS Journal on Computing, 9 (1997),
pp. 185–194.

[25] C. BISCHOF, A. CARLE, P. KHADEMI, AND A. MAUER, ADIFOR 2.0: Automatic differentiation of
FORTRAN 77 programs, IEEE Computational Science & Engineering, 3 (1996), pp. 18–32.

[26] C. BISCHOF, G. CORLISS, AND A. GRIEWANK, Structured second- and higher-order derivatives through
univariate Taylor series, Optimization Methods and Software, 2 (1993), pp. 211–232.

[27] C. BISCHOF, P. KHADEMI, A. BOUARICHA, AND A. CARLE, Efficient computation of gradients and Jaco-
bians by transparent exploitation of sparsity in automatic differentiation, Optimization Methods
and Software, 7 (1996), pp. 1–39.

R E F E R E N C E S 639

[28] C. BISCHOF, L. ROH, AND A. MAUER, ADIC: An extensible automatic differentiation tool for ANSI-C,
Software—Practice and Experience, 27 (1997), pp. 1427–1456.

[29] Å. BJÖRCK, Numerical Methods for Least Squares Problems, SIAM Publications, Philadelphia, PA,
1996.

[30] P. T. BOGGS, R. H. BYRD, AND R. B. SCHNABEL, A stable and efficient algorithm for nonlinear
orthogonal distance regression, SIAM Journal on Scientific and Statistical Computing, 8 (1987),
pp. 1052–1078.

[31] P. T. BOGGS, J. R. DONALDSON, R. H. BYRD, AND R. B. SCHNABEL, ODRPACK—Software for weighted
orthogonal distance regression, ACM Transactions on Mathematical Software, 15 (1981), pp. 348–
364.

[32] P. T. BOGGS AND J. W. TOLLE, Convergence properties of a class of rank-two updates, SIAM Journal
on Optimization, 4 (1994), pp. 262–287.

[33] , Sequential quadratic programming, Acta Numerica, 4 (1996), pp. 1–51.

[34] P. T. BOGGS, J. W. TOLLE, AND P. WANG, On the local convergence of quasi-Newton methods for
constrained optimization, SIAM Journal on Control and Optimization, 20 (1982), pp. 161–171.

[35] I. BONGARTZ, A. R. CONN, N. I. M. GOULD, AND P. L. TOINT, CUTE: Constrained and unconstrained
testing environment, Research Report, IBM T.J. Watson Research Center, Yorktown Heights, NY,
1993.

[36] J. F. BONNANS, E. R. PANIER, A. L. TITS, AND J. L. ZHOU, Avoiding the Maratos effect by means of
a nonmonotone line search. II. Inequality constrained problems — feasible iterates, SIAM Journal
on Numerical Analysis, 29 (1992), pp. 1187–1202.

[37] S. BOYD, L. EL GHAOUI, E. FERON, AND V. BALAKRISHNAN, Linear Matrix Inequalities in Systems
and Control Theory, SIAM Publications, Phildelphia, 1994.

[38] S. BOYD AND L. VANDENBERGHE, Convex Optimization, Cambridge University Press, Cambridge,
2003.

[39] R. P. BRENT, Algorithms for minimization without derivatives, Prentice Hall, Englewood Cliffs,
NJ, 1973.

[40] H. M. BÜCKER, G. F. CORLISS, P. D. HOVLAND, U. NAUMANN, AND B. NORRIS, eds., Automatic Differ-
entiation: Applications, Theory, and Implementations, vol. 50 of Lecture Notes in Computational
Science and Engineering, Springer, New York, 2005.

[41] R. BULIRSCH AND J. STOER, Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.

[42] J. R. BUNCH AND L. KAUFMAN, Some stable methods for calculating inertia and solving symmetric
linear systems, Mathematics of Computation, 31 (1977), pp. 163–179.

[43] J. R. BUNCH AND B. N. PARLETT, Direct methods for solving symmetric indefinite systems of linear
equations, SIAM Journal on Numerical Analysis, 8 (1971), pp. 639–655.

[44] J. V. BURKE AND J. J. MORÉ, Exposing constraints, SIAM Journal on Optimization, 4 (1994),
pp. 573–595.

[45] W. BURMEISTER, Die konvergenzordnung des Fletcher-Powell algorithmus, Zeitschrift für
Angewandte Mathematik und Mechanik, 53 (1973), pp. 693–699.

[46] R. BYRD, J. NOCEDAL, AND R. WALTZ, Knitro: An integrated package for nonlinear optimization,
Technical Report 18, Optimization Technology Center, Evanston, IL, June 2005.

[47] R. BYRD, J. NOCEDAL, AND R. A. WALTZ, Steering exact penalty methods, Technical Report OTC
2004/07, Optimization Technology Center, Northwestern University, Evanston, IL, USA, April
2004.

[48] R. H. BYRD, J.-C. GILBERT, AND J. NOCEDAL, A trust region method based on interior point techniques
for nonlinear programming, Mathematical Programming, 89 (2000), pp. 149–185.

640 R E F E R E N C E S

[49] R. H. BYRD, N. I. M. GOULD, J. NOCEDAL, AND R. A. WALTZ, An algorithm for nonlinear optimization
using linear programming and equality constrained subproblems, Mathematical Programming,
Series B, 100 (2004), pp. 27–48.

[50] R. H. BYRD, M. E. HRIBAR, AND J. NOCEDAL, An interior point method for large scale nonlinear
programming, SIAM Journal on Optimization, 9 (1999), pp. 877–900.

[51] R. H. BYRD, H. F. KHALFAN, AND R. B. SCHNABEL, Analysis of a symmetric rank-one trust region
method, SIAM Journal on Optimization, 6 (1996), pp. 1025–1039.

[52] R. H. BYRD, J. NOCEDAL, AND R. B. SCHNABEL, Representations of quasi-Newton matrices and their
use in limited-memory methods, Mathematical Programming, Series A, 63 (1994), pp. 129–156.

[53] R. H. BYRD, J. NOCEDAL, AND Y. YUAN, Global convergence of a class of quasi-Newton methods on
convex problems, SIAM Journal on Numerical Analysis, 24 (1987), pp. 1171–1190.

[54] R. H. BYRD, R. B. SCHNABEL, AND G. A. SCHULTZ, Approximate solution of the trust regions prob-
lem by minimization over two-dimensional subspaces, Mathematical Programming, 40 (1988),
pp. 247–263.

[55] R. H. BYRD, R. B. SCHNABEL, AND G. A. SHULTZ, A trust region algorithm for nonlinearly constrained
optimization, SIAM Journal on Numerical Analysis, 24 (1987), pp. 1152–1170.

[56] M. R. CELIS, J. E. DENNIS, AND R. A. TAPIA, A trust region strategy for nonlinear equality constrained
optimization, in Numerical Optimization, P. T. Boggs, R. H. Byrd, and R. B. Schnabel, eds.,
SIAM, 1985, pp. 71–82.

[57] R. CHAMBERLAIN, C. LEMARECHAL, H. C. PEDERSEN, AND M. J. D. POWELL, The watchdog technique
for forcing convergence in algorithms for constrained optimization, Mathematical Programming,
16 (1982), pp. 1–17.

[58] S. H. CHENG AND N. J. HIGHAM, A modified Cholesky algorithm based on a symmetric indefinite
factorization, SIAM Journal of Matrix Analysis and Applications, 19 (1998), pp. 1097–1100.

[59] C. M. CHIN AND R. FLETCHER, On the global convergence of an SLP-filter algorithm that takes EQP
steps, Mathematical Programming, Series A, 96 (2003), pp. 161–177.

[60] T. D. CHOI AND C. T. KELLEY, Superlinear convergence and implicit filtering, SIAM Journal on
Optimization, 10 (2000), pp. 1149–1162.

[61] V. CHVÁTAL, Linear Programming, W. H. Freeman and Company, New York, 1983.

[62] F. H. CLARKE, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983
(Reprinted by SIAM Publications, 1990).

[63] A. COHEN, Rate of convergence of several conjugate gradient algorithms, SIAM Journal on
Numerical Analysis, 9 (1972), pp. 248–259.

[64] T. F. COLEMAN, Linearly constrained optimization and projected preconditioned conjugate gradi-
ents, in Proceedings of the Fifth SIAM Conference on Applied Linear Algebra, J. Lewis, ed.,
Philadelphia, USA, 1994, SIAM, pp. 118–122.

[65] T. F. COLEMAN AND A. R. CONN, Non-linear programming via an exact penalty-function:
Asymptotic analysis, Mathematical Programming, 24 (1982), pp. 123–136.

[66] T. F. COLEMAN, B. GARBOW, AND J. J. MORÉ, Software for estimating sparse Jacobian matrices, ACM
Transactions on Mathematical Software, 10 (1984), pp. 329–345.

[67] , Software for estimating sparse Hessian matrices, ACM Transactions on Mathematical
Software, 11 (1985), pp. 363–377.

[68] T. F. COLEMAN AND J. J. MORÉ, Estimation of sparse Jacobian matrices and graph coloring problems,
SIAM Journal on Numerical Analysis, 20 (1983), pp. 187–209.

[69] , Estimation of sparse Hessian matrices and graph coloring problems, Mathematical
Programming, 28 (1984), pp. 243–270.

R E F E R E N C E S 641

[70] A. R. CONN, N. I. M. GOULD, AND P. L. TOINT, Testing a class of algorithms for solving minimization
problems with simple bounds on the variables, Mathematics of Computation, 50 (1988), pp. 399–
430.

[71] , Convergence of quasi-Newton matrices generated by the symmetric rank one update,
Mathematical Programming, 50 (1991), pp. 177–195.

[72] , LANCELOT: a FORTRAN package for large-scale nonlinear optimization (Release A),
no. 17 in Springer Series in Computational Mathematics, Springer-Verlag, New York, 1992.

[73] , Numerical experiments with the LANCELOT package (Release A) for large-scale nonlinear
optimization, Report 92/16, Department of Mathematics, University of Namur, Belgium, 1992.

[74] A. R. CONN, N. I. M. GOULD, AND P. L. TOINT, Trust-Region Methods, MPS-SIAM Series on
Optimization, SIAM, 2000.

[75] A. R. CONN, K. SCHEINBERG, AND P. L. TOINT, On the convergence of derivative-free methods for
unconstrained optimization, in Approximation Theory and Optimization: Tributes to M. J. D.
Powell, A. Iserles and M. Buhmann, eds., Cambridge University Press, Cambridge, UK, 1997,
pp. 83–108.

[76] , Recent progress in unconstrained nonlinear optimization without derivatives, Mathemat-
ical Programming, Series B, 79 (1997), pp. 397–414.

[77] W. J. COOK, W. H. CUNNINGHAM, W. R. PULLEYBLANK, AND A. SCHRIJVER, Combinatorial
Optimization, John Wiley & Sons, New York, 1997.

[78] B. F. CORLISS AND L. B. RALL, An introduction to automatic differentiation, in Computational
Differentiation: Techniques, Applications, and Tools, M. Berz, C. Bischof, G. F. Corliss, and
A. Griewank, eds., SIAM Publications, Philadelphia, PA, 1996, ch. 1.

[79] T. H. CORMEN, C. E. LEISSERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press, 1990.

[80] R. W. COTTLE, J.-S. PANG, AND R. E. STONE, The Linear Complementarity Problem, Academic
Press, San Diego, 1992.

[81] R. COURANT, Variational methods for the solution of problems with equilibrium and vibration,
Bulletin of the American Mathematical Society, 49 (1943), pp. 1–23.

[82] H. P. CROWDER AND P. WOLFE, Linear convergence of the conjugate gradient method, IBM Journal
of Research and Development, 16 (1972), pp. 431–433.

[83] A. CURTIS, M. J. D. POWELL, AND J. REID, On the estimation of sparse Jacobian matrices, Journal
of the Institute of Mathematics and its Applications, 13 (1974), pp. 117–120.

[84] J. CZYZYK, S. MEHROTRA, M. WAGNER, AND S. J. WRIGHT, PCx: An interior-point code for linear
programming, Optimization Methods and Software, 11/12 (1999), pp. 397–430.

[85] Y. DAI AND Y. YUAN, A nonlinear conjugate gradient method with a strong global convergence
property, SIAM Journal on Optimization, 10 (1999), pp. 177–182.

[86] G. B. DANTZIG, Linear Programming and Extensions, Princeton University Press, Princeton, NJ,
1963.

[87] W. C. DAVIDON, Variable metric method for minimization, Technical Report ANL–5990 (revised),
Argonne National Laboratory, Argonne, IL, 1959.

[88] , Variable metric method for minimization, SIAM Journal on Optimization, 1 (1991),
pp. 1–17.

[89] R. S. DEMBO, S. C. EISENSTAT, AND T. STEIHAUG, Inexact Newton methods, SIAM Journal on
Numerical Analysis, 19 (1982), pp. 400–408.

[90] J. E. DENNIS, D. M. GAY, AND R. E. WELSCH, Algorithm 573 — NL2SOL, An adaptive nonlinear
least-squares algorithm, ACM Transactions on Mathematical Software, 7 (1981), pp. 348–368.

642 R E F E R E N C E S

[91] J. E. DENNIS AND J. J. MORÉ, Quasi-Newton methods, motivation and theory, SIAM Review, 19
(1977), pp. 46–89.

[92] J. E. DENNIS AND R. B. SCHNABEL, Numerical Methods for Unconstrained Optimization and Non-
linear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983. Reprinted by SIAM Publications,
1993.

[93] J. E. DENNIS AND R. B. SCHNABEL, A view of unconstrained optimization, in Optimization, vol. 1 of
Handbooks in Operations Research and Management, Elsevier Science Publishers, Amsterdam,
The Netherlands, 1989, pp. 1–72.

[94] I. I. DIKIN, Iterative solution of problems of linear and quadratic programming, Soviet
Mathematics-Doklady, 8 (1967), pp. 674–675.

[95] I. S. DUFF AND J. K. REID, The multifrontal solution of indefinite sparse symmetric linear equations,
ACM Transactions on Mathematical Software, 9 (1983), pp. 302–325.

[96] I. S. DUFF AND J. K. REID, The design of MA48: A code for the direct solution of sparse unsymmetric
linear systems of equations, ACM Transactions on Mathematical Software, 22 (1996), pp. 187–
226.

[97] I. S. DUFF, J. K. REID, N. MUNKSGAARD, AND H. B. NEILSEN, Direct solution of sets of linear equations
whose matrix is sparse symmetric and indefinite, Journal of the Institute of Mathematics and its
Applications, 23 (1979), pp. 235–250.

[98] A. V. FIACCO AND G. P. MCCORMICK, Nonlinear Programming: Sequential Unconstrained Mini-
mization Techniques, John Wiley & Sons, New York, N.Y., 1968. Reprinted by SIAM Publications,
1990.

[99] R. FLETCHER, A general quadratic programming algorithm, Journal of the Institute of Mathematics
and its Applications, 7 (1971), pp. 76–91.

[100] , Second order corrections for non-differentiable optimization, in Numerical Analysis,
D. Griffiths, ed., Springer Verlag, 1982, pp. 85–114. Proceedings Dundee 1981.

[101] , Practical Methods of Optimization, John Wiley & Sons, New York, second ed., 1987.

[102] , An optimal positive definite update for sparse Hessian matrices, SIAM Journal on
Optimization, 5 (1995), pp. 192–218.

[103] , Stable reduced hessian updates for indefinite quadratic programming, Mathematical
Programming, 87 (2000), pp. 251–264.

[104] R. FLETCHER, A. GROTHEY, AND S. LEYFFER, Computing sparse Hessian and Jacobian approximations
with optimal hereditary properties, technical report, Department of Mathematics, University of
Dundee, 1996.

[105] R. FLETCHER AND S. LEYFFER, Nonlinear programming without a penalty function, Mathematical
Programming, Series A, 91 (2002), pp. 239–269.

[106] R. FLETCHER, S. LEYFFER, AND P. L. TOINT, On the global convergence of an SLP-filter algorithm,
Numerical Analysis Report NA/183, Dundee University, Dundee, Scotland, UK, 1999.

[107] R. FLETCHER AND C. M. REEVES, Function minimization by conjugate gradients, Computer Journal,
7 (1964), pp. 149–154.

[108] R. FLETCHER AND E. SAINZ DE LA MAZA, Nonlinear programming and nonsmooth optimization by
successive linear programming, Mathematical Programming, 43 (1989), pp. 235–256.

[109] C. FLOUDAS AND P. PARDALOS, eds., Recent Advances in Global Optimization, Princeton University
Press, Princeton, NJ, 1992.

[110] J. J. H. FORREST AND J. A. TOMLIN, Updated triangular factors of the basis to maintain sparsity in
the product form simplex method, Mathematical Programming, 2 (1972), pp. 263–278.

R E F E R E N C E S 643

[111] A. FORSGREN, P. E. GILL, AND M. H. WRIGHT, Interior methods for nonlinear optimization, SIAM
Review, 44 (2003), pp. 525–597.

[112] R. FOURER, D. M. GAY, AND B. W. KERNIGHAN, AMPL: A Modeling Language for Mathematical
Programming, The Scientific Press, South San Francisco, CA, 1993.

[113] R. FOURER AND S. MEHROTRA, Solving symmetric indefinite systems in an interior-point method
for linear programming, Mathematical Programming, 62 (1993), pp. 15–39.

[114] M. P. FRIEDLANDER AND M. A. SAUNDERS, A globally convergent linearly constrained Lagrangian
method for nonlinear optimization, SIAM Journal on Optimization, 15 (2005), pp. 863–897.

[115] K. R. FRISCH, The logarithmic potential method of convex programming, Technical Report,
University Institute of Economics, Oslo, Norway, 1955.

[116] D. GABAY, Reduced quasi-Newton methods with feasibility improvement for nonlinearly
constrained optimization, Mathematical Programming Studies, 16 (1982), pp. 18–44.

[117] U. M. GARCIA-PALOMARES AND O. L. MANGASARIAN, Superlinearly convergent quasi-Newton meth-
ods for nonlinearly constrained optimization problems, Mathematical Programming, 11 (1976),
pp. 1–13.

[118] D. M. GAY, More AD of nonlinear AMPL models: computing Hessian information and exploiting
partial separability, in Computational Differentiation: Techniques, Applications, and Tools,
M. Berz, C. Bischof, G. F. Corliss, and A. Griewank, eds., SIAM Publications, Philadelphia, PA,
1996, pp. 173–184.

[119] R.-P. GE AND M. J. D. POWELL, The convergence of variable metric matrices in unconstrained
optimization, Mathematical Programming, 27 (1983), pp. 123–143.

[120] A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN, What color is your Jacobian? Graph coloring for
computing derivatives, SIAM Review, 47 (2005), pp. 629–705.

[121] E. M. GERTZ AND S. J. WRIGHT, Object-oriented software for quadratic programming, ACM
Transactions on Mathematical Software, 29 (2003), pp. 58–81.

[122] J. GILBERT AND C. LEMARÉCHAL, Some numerical experiments with variable-storage quasi-Newton
algorithms, Mathematical Programming, Series B, 45 (1989), pp. 407–435.

[123] J. GILBERT AND J. NOCEDAL, Global convergence properties of conjugate gradient methods for
optimization, SIAM Journal on Optimization, 2 (1992), pp. 21–42.

[124] P. E. GILL, G. H. GOLUB, W. MURRAY, AND M. A. SAUNDERS, Methods for modifying matrix
factorizations, Mathematics of Computation, 28 (1974), pp. 505–535.

[125] P. E. GILL AND M. W. LEONARD, Limited-memory reduced-Hessian methods for unconstrained
optimization, SIAM Journal on Optimization, 14 (2003), pp. 380–401.

[126] P. E. GILL AND W. MURRAY, Numerically stable methods for quadratic programming, Mathematical
Programming, 14 (1978), pp. 349–372.

[127] P. E. GILL, W. MURRAY, AND M. A. SAUNDERS, User’s guide for SNOPT (Version 5.3): A FOR-
TRAN package for large-scale nonlinear programming, Technical Report NA 97-4, Department
of Mathematics, University of California, San Diego, 1997.

[128] , SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Journal on
Optimization, 12 (2002), pp. 979–1006.

[129] P. E. GILL, W. MURRAY, M. A. SAUNDERS, AND M. H. WRIGHT, User’s guide for SOL/QPSOL,
Technical Report SOL84–6, Department of Operations Research, Stanford University, Stanford,
California, 1984.

[130] P. E. GILL, W. MURRAY, AND M. H. WRIGHT, Practical Optimization, Academic Press, 1981.

[131] , Numerical Linear Algebra and Optimization, Vol. 1, Addison Wesley, Redwood City,
California, 1991.

644 R E F E R E N C E S

[132] D. GOLDFARB, Curvilinear path steplength algorithms for minimization which use directions of
negative curvature, Mathematical Programming, 18 (1980), pp. 31–40.

[133] D. GOLDFARB AND J. FORREST, Steepest edge simplex algorithms for linear programming,
Mathematical Programming, 57 (1992), pp. 341–374.

[134] D. GOLDFARB AND J. K. REID, A practicable steepest-edge simplex algorithm, Mathematical
Programming, 12 (1977), pp. 361–373.

[135] G. GOLUB AND D. O’LEARY, Some history of the conjugate gradient methods and the Lanczos
algorithms: 1948–1976, SIAM Review, 31 (1989), pp. 50–100.

[136] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins University Press,
Baltimore, third ed., 1996.

[137] J. GONDZIO, HOPDM (version 2.12): A fast LP solver based on a primal-dual interior point method,
European Journal of Operations Research, 85 (1995), pp. 221–225.

[138] , Multiple centrality corrections in a primal-dual method for linear programming,
Computational Optimization and Applications, 6 (1996), pp. 137–156.

[139] J. GONDZIO AND A. GROTHEY, Parallel interior point solver for structured quadratic programs:
Application to financial planning problems, Technical Report MS-03-001, School of Mathematics,
University of Edinburgh, Scotland, 2003.

[140] N. I. M. GOULD, On the accurate determination of search directions for simple differentiable penalty
functions, I.M.A. Journal on Numerical Analysis, 6 (1986), pp. 357–372.

[141] , On the convergence of a sequential penalty function method for constrained minimization,
SIAM Journal on Numerical Analysis, 26 (1989), pp. 107–128.

[142] , An algorithm for large scale quadratic programming, I.M.A. Journal on Numerical
Analysis, 11 (1991), pp. 299–324.

[143] N. I. M. GOULD, M. E. HRIBAR, AND J. NOCEDAL, On the solution of equality constrained quadratic
problems arising in optimization, SIAM Journal on Scientific Computing, 23 (2001), pp. 1375–
1394.

[144] N.I.M. GOULD, S. LEYFFER, AND P. L. TOINT, A multidimensional filter algorithm for nonlinear
equations and nonlinear least squares, SIAM Journal on Optimization, 15 (2004), pp. 17–38.

[145] N. I. M. GOULD, S. LUCIDI, M. ROMA, AND P. L. TOINT, Solving the trust-region subproblem using
the Lanczos method. SIAM Journal on Optimization, 9 (1999), pp. 504–525.

[146] N. I. M. GOULD, D. ORBAN, AND P. L. TOINT, GALAHAD—a library of thread-safe Fortran 90
packages for large-scale nonlinear optimization, ACM Transactions on Mathematical Software,
29 (2003), pp. 353–372.

[147] N. I. M. GOULD, D. ORBAN, AND P. L. TOINT, Numerical methods for large-scale nonlinear
optimization, Acta Numerica, 14 (2005), pp. 299–361.

[148] N. I. M. GOULD AND P. L. TOINT, An iterative working-set method for large-scale non-convex
quadratic programming, Applied Numerical Mathematics, 43 (2002), pp. 109–128.

[149] , Numerical methods for large-scale non-convex quadratic programming, in Trends in
Industrial and Applied Mathematics, A. H. Siddiqi and M. Kočvara, eds., Dordrecht, The
Netherlands, 2002, Kluwer Academic Publishers, pp. 149–179.

[150] A. GRIEWANK, Achieving logarithmic growth of temporal and spatial complexity in reverse
automatic differentiation, Optimization Methods and Software, 1 (1992), pp. 35–54.

[151] , Automatic directional differentiation of nonsmooth composite functions, in Seventh
French-German Conference on Optimization, 1994.

[152] A. GRIEWANK, Evaluating Derivatives: Principles and Techniques of Automatic Differentiation,
vol. 19 of Frontiers in Applied Mathematics, SIAM, 2000.

R E F E R E N C E S 645

[153] A. GRIEWANK AND G. F. CORLISS, eds., Automatic Differentition of Algorithms, SIAM Publications,
Philadelphia, Penn., 1991.

[154] A. GRIEWANK, D. JUEDES, AND J. UTKE, ADOL-C, A package for the automatic differentiation
of algorithms written in C/C++, ACM Transactions on Mathematical Software, 22 (1996),
pp. 131–167.

[155] A. GRIEWANK AND P. L. TOINT, Local convergence analysis of partitioned quasi-Newton updates,
Numerische Mathematik, 39 (1982), pp. 429–448.

[156] , Partitioned variable metric updates for large structured optimization problems,
Numerische Mathematik, 39 (1982), pp. 119–137.

[157] J. GRIMM, L. POTTIER, AND N. ROSTAING-SCHMIDT, Optimal time and minimum space time product
for reversing a certain class of programs, in Computational Differentiation, Techniques, Appli-
cations, and Tools, M. Berz, C. Bischof, G. Corliss, and A. Griewank, eds., SIAM, Philadelphia,
1996, pp. 95–106.

[158] L. GRIPPO, F. LAMPARIELLO, AND S. LUCIDI, A nonmonotone line search technique for Newton’s
method, SIAM Journal on Numerical Analysis, 23 (1986), pp. 707–716.

[159] C. GUÉRET, C. PRINS, AND M. SEVAUX, Applications of optimization with Xpress-MP, Dash
Optimization, 2002.

[160] W. W. HAGER, Minimizing a quadratic over a sphere, SIAM Journal on Optimization, 12 (2001),
pp. 188–208.

[161] W. W. HAGER AND H. ZHANG, A new conjugate gradient method with guaranteed descent and an
efficient line search, SIAM Journal on Optimization, 16 (2005), pp. 170–192.

[162] , A survey of nonlinear conjugate gradient methods. To appear in the Pacific Journal of
Optimization, 2005.

[163] S. P. HAN, Superlinearly convergent variable metric algorithms for general nonlinear programming
problems, Mathematical Programming, 11 (1976), pp. 263–282.

[164] , A globally convergent method for nonlinear programming, Journal of Optimization Theory
and Applications, 22 (1977), pp. 297–309.

[165] S. P. HAN AND O. L. MANGASARIAN, Exact penalty functions in nonlinear programming,
Mathematical Programming, 17 (1979), pp. 251–269.

[166] HARWELL SUBROUTINE LIBRARY, A catalogue of subroutines (release 13), AERE Harwell Laboratory,
Harwell, Oxfordshire, England, 1998.

[167] M. R. HESTENES, Multiplier and gradient methods, Journal of Optimization Theory and
Applications, 4 (1969), pp. 303–320.

[168] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, Journal
of Research of the National Bureau of Standards, 49 (1952), pp. 409–436.

[169] N. J. HIGHAM, Accuracy and Stability of Numerical Algorithms, SIAM Publications, Philadelphia,
1996.

[170] J.-B. HIRIART-URRUTY AND C. LEMARECHAL, Convex Analysis and Minimization Algorithms,
Springer-Verlag, Berlin, New York, 1993.

[171] P. HOUGH, T. KOLDA, AND V. TORCZON, Asynchronous parallel pattern search for nonlinear
optimization, SIAM Journal on Optimization, 23 (2001), pp. 134–156.

[172] ILOG CPLEX 8.0, User’s Manual, ILOG SA, Gentilly, France, 2002.

[173] D. JONES, C. PERTTUNEN, AND B. STUCKMAN, Lipschitzian optimization without the Lipschitz
constant, Journal of Optimization Theory and Applications, 79 (1993), pp. 157–181.

[174] P. KALL AND S. W. WALLACE, Stochastic Programming, John Wiley & Sons, New York, 1994.

646 R E F E R E N C E S

[175] N. KARMARKAR, A new polynomial-time algorithm for linear programming, Combinatorics, 4
(1984), pp. 373–395.

[176] C. KELLER, N. I. M. GOULD, AND A. J. WATHEN, Constraint preconditioning for indefinite linear
systems, SIAM Journal on Matrix Analysis and Applications, 21 (2000), pp. 1300–1317.

[177] C. T. KELLEY, Iterative Methods for Linear and Nonlinear Equations, SIAM Publications,
Philadelphia, PA, 1995.

[178] C. T. KELLEY, Detection and remediation of stagnation in the Nelder-Mead algorithm using a
sufficient decrease condition, SIAM Journal on Optimization, 10 (1999), pp. 43–55.

[179] , Iterative Methods for Optimization, no. 18 in Frontiers in Applied Mathematics, SIAM
Publications, Philadelphia, PA, 1999.

[180] L. G. KHACHIYAN, A polynomial algorithm in linear programming, Soviet Mathematics Doklady,
20 (1979), pp. 191–194.

[181] H. F. KHALFAN, R. H. BYRD, AND R. B. SCHNABEL, A theoretical and experimental study of the
symmetric rank one update, SIAM Journal on Optimization, 3 (1993), pp. 1–24.

[182] V. KLEE AND G. J. MINTY, How good is the simplex algorithm? in Inequalities, O. Shisha, ed.,
Academic Press, New York, 1972, pp. 159–175.

[183] T. G. KOLDA, R. M. LEWIS, AND V. TORCZON, Optimization by direct search: New perspectives on
some classical and modern methods, SIAM Review, 45 (2003), pp. 385–482.

[184] M. KOČVARA AND M. STINGL, PENNON, a code for nonconvex nonlinear and semidefinite
programming, Optimization Methods and Software, 18 (2003), pp. 317–333.

[185] H. W. KUHN AND A. W. TUCKER, Nonlinear programming, in Proceedings of the Second Berkeley
Symposium on Mathematical Statistics and Probability, J. Neyman, ed., Berkeley, CA, 1951,
University of California Press, pp. 481–492.

[186] J. W. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT, Convergence properties of the
Nelder-Mead simplex algorithm in low dimensions, SIAM Journal on Optimization, 9 (1998),
pp. 112–147.

[187] S. LANG, Real Analysis, Addison-Wesley, Reading, MA, second ed., 1983.

[188] C. L. LAWSON AND R. J. HANSON, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs,
NJ, 1974.

[189] C. LEMARÉCHAL, A view of line searches, in Optimization and Optimal Control, W. Oettli and
J. Stoer, eds., no. 30 in Lecture Notes in Control and Information Science, Springer-Verlag,
1981, pp. 59–78.

[190] K. LEVENBERG, A method for the solution of certain non-linear problems in least squares, Quarterly
of Applied Mathematics, 2 (1944), pp. 164–168.

[191] S. LEYFFER, G. LOPEZ-CALVA, AND J. NOCEDAL, Interior methods for mathematical programs with
complementarity constraints, technical report 8, Optimization Technology Center, Northwestern
University, Evanston, IL, 2004.

[192] C. LIN AND J. MORÉ, Newton’s method for large bound-constrained optimization problems, SIAM
Journal on Optimization, 9 (1999), pp. 1100–1127.

[193] C. LIN AND J. J. MORÉ, Incomplete Cholesky factorizations with limited memory, SIAM Journal
on Scientific Computing, 21 (1999), pp. 24–45.

[194] D. C. LIU AND J. NOCEDAL, On the limited-memory BFGS method for large scale optimization,
Mathematical Programming, 45 (1989), pp. 503–528.

[195] D. LUENBERGER, Introduction to Linear and Nonlinear Programming, Addison Wesley, second ed.,
1984.

R E F E R E N C E S 647

[196] L. LUKŠAN AND J. VLČEK, Indefinitely preconditioned inexact Newton method for large sparse equal-
ity constrained nonlinear programming problems, Numerical Linear Algebra with Applications,
5 (1998), pp. 219–247.

[197] Macsyma User’s Guide, second ed., 1996.

[198] O. L. MANGASARIAN, Nonlinear Programming, McGraw-Hill, New York, 1969. Reprinted by
SIAM Publications, 1995.

[199] N. MARATOS, Exact penalty function algorithms for finite dimensional and control optimization
problems, PhD thesis, University of London, 1978.

[200] M. MARAZZI AND J. NOCEDAL, Wedge trust region methods for derivative free optimization,
Mathematical Programming, Series A, 91 (2002), pp. 289–305.

[201] H. M. MARKOWITZ, Portfolio selection, Journal of Finance, 8 (1952), pp. 77–91.

[202] , The elimination form of the inverse and its application to linear programming, Management
Science, 3 (1957), pp. 255–269.

[203] D. W. MARQUARDT, An algorithm for least squares estimation of non-linear parameters, SIAM
Journal, 11 (1963), pp. 431–441.

[204] D. Q. MAYNE AND E. POLAK, A superlinearly convergent algorithm for constrained optimization
problems, Mathematical Programming Studies, 16 (1982), pp. 45–61.

[205] L. MCLINDEN, An analogue of Moreau’s proximation theorem, with applications to the nonlinear
complementarity problem, Pacific Journal of Mathematics, 88 (1980), pp. 101–161.

[206] N. MEGIDDO, Pathways to the optimal set in linear programming, in Progress in Mathematical
Programming: Interior-Point and Related Methods, N. Megiddo, ed., Springer-Verlag, New
York, NY, 1989, ch. 8, pp. 131–158.

[207] S. MEHROTRA, On the implementation of a primal-dual interior point method, SIAM Journal on
Optimization, 2 (1992), pp. 575–601.

[208] S. MIZUNO, M. TODD, AND Y. YE, On adaptive step primal-dual interior-point algorithms for linear
programming, Mathematics of Operations Research, 18 (1993), pp. 964–981.

[209] J. L. MORALES AND J. NOCEDAL, Automatic preconditioning by limited memory quasi-newton
updating, SIAM Journal on Optimization, 10 (2000), pp. 1079–1096.

[210] J. J. MORÉ, The Levenberg-Marquardt algorithm: Implementation and theory, in Lecture Notes in
Mathematics, No. 630–Numerical Analysis, G. Watson, ed., Springer-Verlag, 1978, pp. 105–116.

[211] , Recent developments in algorithms and software for trust region methods, in Mathematical
Programming: The State of the Art, Springer-Verlag, Berlin, 1983, pp. 258–287.

[212] , A collection of nonlinear model problems, in Computational Solution of Nonlinear
Systems of Equations, vol. 26 of Lectures in Applied Mathematics, American Mathematical
Society, Providence, RI, 1990, pp. 723–762.

[213] J. J. MORÉ AND D. C. SORENSEN, On the use of directions of negative curvature in a modified Newton
method, Mathematical Programming, 16 (1979), pp. 1–20.

[214] , Computing a trust region step, SIAM Journal on Scientific and Statistical Computing, 4
(1983), pp. 553–572.

[215] , Newton’s method, in Studies in Numerical Analysis, vol. 24 of MAA Studies in
Mathematics, The Mathematical Association of America, 1984, pp. 29–82.

[216] J. J. MORÉ AND D. J. THUENTE, Line search algorithms with guaranteed sufficient decrease, ACM
Transactions on Mathematical Software, 20 (1994), pp. 286–307.

[217] J. J. MORÉ AND S. J. WRIGHT, Optimization Software Guide, SIAM Publications, Philadelphia,
1993.

648 R E F E R E N C E S

[218] B. A. MURTAGH AND M. A. SAUNDERS, MINOS 5.1 User’s guide, Technical Report SOL-83-20R,
Stanford University, 1987.

[219] K. G. MURTY AND S. N. KABADI, Some NP-complete problems in quadratic and nonlinear
programming, Mathematical Programming, 19 (1987), pp. 200–212.

[220] S. G. NASH, Newton-type minimization via the Lanczos method, SIAM Journal on Numerical
Analysis, 21 (1984), pp. 553–572.

[221] , SUMT (Revisited), Operations Research, 46 (1998), pp. 763–775.

[222] U. NAUMANN, Optimal accumulation of Jacobian matrices by elimination methods on the dual
computational graph, Mathematical Programming, 99 (2004), pp. 399–421.

[223] J. A. NELDER AND R. MEAD, A simplex method for function minimization, The Computer Journal,
8 (1965), pp. 308–313.

[224] G. L. NEMHAUSER AND L. A. WOLSEY, Integer and Combinatorial Optimization, John Wiley &
Sons, New York, 1988.

[225] A. S. NEMIROVSKII AND D. B. YUDIN, Problem complexity and method efficiency, John Wiley &
Sons, New York, 1983.

[226] Y. E. NESTEROV AND A. S. NEMIROVSKII, Interior Point Polynomial Methods in Convex Programming,
SIAM Publications, Philadelphia, 1994.

[227] G. N. NEWSAM AND J. D. RAMSDELL, Estimation of sparse Jacobian matrices, SIAM Journal on
Algebraic and Discrete Methods, 4 (1983), pp. 404–418.

[228] J. NOCEDAL, Updating quasi-Newton matrices with limited storage, Mathematics of Computation,
35 (1980), pp. 773–782.

[229] , Theory of algorithms for unconstrained optimization, Acta Numerica, 1 (1992), pp. 199–
242.

[230] J. M. ORTEGA AND W. C. RHEINBOLDT, Iterative solution of nonlinear equations in several variables,
Academic Press, New York and London, 1970.

[231] M. R. OSBORNE, Nonlinear least squares—the Levenberg algorithm revisited, Journal of the
Australian Mathematical Society, Series B, 19 (1976), pp. 343–357.

[232] , Finite Algorithms in Optimization and Data Analysis, John Wiley & Sons, New York,
1985.

[233] M. L. OVERTON, Numerical Computing with IEEE Floating Point Arithmetic, SIAM, Philadelphia,
PA, 2001.

[234] C. C. PAIGE AND M. A. SAUNDERS, LSQR: An algorithm for sparse linear equations and sparse least
squares, ACM Transactions on Mathematical Software, 8 (1982), pp. 43–71.

[235] C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization: Algorithms and Complexity,
Prentice Hall, Englewood Cliffs, NJ, 1982.

[236] E. POLAK, Optimization: Algorithms and Consistent Approximations, no. 124 in Applied
Mathematical Sciences, Springer, 1997.

[237] E. POLAK AND G. RIBIÈRE, Note sur la convergence de méthodes de directions conjuguées, Revue
Française d’Informatique et de Recherche Opérationnelle, 16 (1969), pp. 35–43.

[238] B. T. POLYAK, The conjugate gradient method in extremal problems, U.S.S.R. Computational
Mathematics and Mathematical Physics, 9 (1969), pp. 94–112.

[239] M. J. D. POWELL, An efficient method for finding the minimum of a function of several variables
without calculating derivatives, Computer Journal, 91 (1964), pp. 155–162.

[240] , A method for nonlinear constraints in minimization problems, in Optimization,
R. Fletcher, ed., Academic Press, New York, NY, 1969, pp. 283–298.

R E F E R E N C E S 649

[241] , A hybrid method for nonlinear equations, in Numerical Methods for Nonlinear Algebraic
Equations, P. Rabinowitz, ed., Gordon & Breach, London, 1970, pp. 87–114.

[242] , Problems related to unconstrained optimization, in Numerical Methods for Uncon-
strained Optimization, W. Murray, ed., Academic Press, 1972, pp. 29–55.

[243] , On search directions for minimization algorithms, Mathematical Programming, 4 (1973),
pp. 193–201.

[244] , Convergence properties of a class of minimization algorithms, in Nonlinear Programming
2, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., Academic Press, New York, 1975,
pp. 1–27.

[245] , Some convergence properties of the conjugate gradient method, Mathematical
Programming, 11 (1976), pp. 42–49.

[246] , Some global convergence properties of a variable metric algorithm for minimization without
exact line searches, in Nonlinear Programming, SIAM-AMS Proceedings, Vol. IX, R. W. Cottle
and C. E. Lemke, eds., SIAM Publications, 1976, pp. 53–72.

[247] , A fast algorithm for nonlinearly constrained optimization calculations, in Numerical
Analysis Dundee 1977, G. A. Watson, ed., Springer Verlag, Berlin, 1977, pp. 144–157.

[248] , Restart procedures for the conjugate gradient method, Mathematical Programming, 12
(1977), pp. 241–254.

[249] , Algorithms for nonlinear constraints that use Lagrangian functions, Mathematical
Programming, 14 (1978), pp. 224–248.

[250] , The convergence of variable metric methods for nonlinearly constrained optimization
calculations, in Nonlinear Programming 3, Academic Press, New York and London, 1978,
pp. 27–63.

[251] , On the rate of convergence of variable metric algorithms for unconstrained optimization,
Technical Report DAMTP 1983/NA7, Department of Applied Mathematics and Theoretical
Physics, Cambridge University, 1983.

[252] , Variable metric methods for constrained optimization, in Mathematical Programming:
The State of the Art, Bonn, 1982, Springer-Verlag, Berlin, 1983, pp. 288–311.

[253] , Nonconvex minimization calculations and the conjugate gradient method, Lecture Notes
in Mathematics, 1066 (1984), pp. 122–141.

[254] , The performance of two subroutines for constrained optimization on some difficult test
problems, in Numerical Optimization, P. T. Boggs, R. H. Byrd, and R. B. Schnabel, eds., SIAM
Publications, Philadelphia, 1984.

[255] , Convergence properties of algorithms for nonlinear optimization, SIAM Review, 28 (1986),
pp. 487–500.

[256] , Direct search algorithms for optimization calculations, Acta Numerica, 7 (1998), pp. 287–
336.

[257] , UOBYQA: unconstrained optimization by quadratic approximation, Mathematical
Programming, Series B, 92 (2002), pp. 555–582.

[258] , On trust-region methods for unconstrained minimization without derivatives, Mathemat-
ical Programming, 97 (2003), pp. 605–623.

[259] , Least Frobenius norm updating of quadratic models that satisfy interpolation conditions,
Mathematical Programming, 100 (2004), pp. 183–215.

[260] , The NEWUOA software for unconstrained optimization without derivatives, Numerical
Analysis Report DAMPT 2004/NA05, University of Cambridge, Cambridge, UK, 2004.

650 R E F E R E N C E S

[261] M. J. D. POWELL AND P. L. TOINT, On the estimation of sparse Hessian matrices, SIAM Journal on
Numerical Analysis, 16 (1979), pp. 1060–1074.

[262] R. L. RARDIN, Optimization in Operations Research, Prentice Hall, Englewood Cliffs, NJ, 1998.

[263] F. RENDL AND H. WOLKOWICZ, A semidefinite framework for trust region subproblems with
applications to large scale minimization, Mathematical Programming, 77 (1997), pp. 273–299.

[264] J. M. RESTREPO, G. K. LEAF, AND A. GRIEWANK, Circumventing storage limitations in variational
data assimilation studies, SIAM Journal on Scientific Computing, 19 (1998), pp. 1586–1605.

[265] K. RITTER, On the rate of superlinear convergence of a class of variable metric methods, Numerische
Mathematik, 35 (1980), pp. 293–313.

[266] S. M. ROBINSON, A quadratically convergent algorithm for general nonlinear programming
problems, Mathematical Programming, 3 (1972), pp. 145–156.

[267] , Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-
programming algorithms, Mathematical Programming, 7 (1974), pp. 1–16.

[268] , Generalized equations and their solutions. Part II: Applications to nonlinear programming,
Mathematical Programming Study, 19 (1982), pp. 200–221.

[269] R. T. ROCKAFELLAR, The multiplier method of Hestenes and Powell applied to convex programming,
Journal of Optimization Theory and Applications, 12 (1973), pp. 555–562.

[270] , Lagrange multipliers and optimality, SIAM Review, 35 (1993), pp. 183–238.

[271] J. B. ROSEN AND J. KREUSER, A gradient projection algorithm for nonlinear constraints, in Numerical
Methods for Non-Linear Optimization, F. A. Lootsma, ed., Academic Press, London and New
York, 1972, pp. 297–300.

[272] , Iterative Methods for Sparse Linear Systems, SIAM Publications, Philadelphia, PA,
second ed., 2003.

[273] Y. SAAD AND M. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986),
pp. 856–869.

[274] H. SCHEEL AND S. SCHOLTES, Mathematical programs with complementarity constraints:
Stationarity, optimality and sensitivity, Mathematics of Operations Research, 25 (2000),
pp. 1–22.

[275] T. SCHLICK, Modified Cholesky factorizations for sparse preconditioners, SIAM Journal on Scientific
Computing, 14 (1993), pp. 424–445.

[276] R. B. SCHNABEL AND E. ESKOW, A new modified Cholesky factorization, SIAM Journal on Scientific
Computing, 11 (1991), pp. 1136–1158.

[277] R. B. SCHNABEL AND P. D. FRANK, Tensor methods for nonlinear equations, SIAM Journal on
Numerical Analysis, 21 (1984), pp. 815–843.

[278] G. SCHULLER, On the order of convergence of certain quasi-Newton methods, Numerische
Mathematik, 23 (1974), pp. 181–192.

[279] G. A. SCHULTZ, R. B. SCHNABEL, AND R. H. BYRD, A family of trust-region-based algorithms
for unconstrained minimization with strong global convergence properties, SIAM Journal on
Numerical Analysis, 22 (1985), pp. 47–67.

[280] G. A. F. SEBER AND C. J. WILD, Nonlinear Regression, John Wiley & Sons, New York, 1989.

[281] T. STEIHAUG, The conjugate gradient method and trust regions in large scale optimization, SIAM
Journal on Numerical Analysis, 20 (1983), pp. 626–637.

[282] J. STOER, On the relation between quadratic termination and convergence properties of
minimization algorithms. Part I: Theory, Numerische Mathematik, 28 (1977), pp. 343–366.

R E F E R E N C E S 651

[283] K. TANABE, Centered Newton method for mathematical programming, in System Modeling and
Optimization: Proceedings of the 13th IFIP conference, vol. 113 of Lecture Notes in Control
and Information Systems, Berlin, 1988, Springer-Verlag, pp. 197–206.

[284] M. J. TODD, Potential reduction methods in mathematical programming, Mathematical
Programming, Series B, 76 (1997), pp. 3–45.

[285] , Semidefinite optimization, Acta Numerica, 10 (2001), pp. 515–560.

[286] , Detecting infeasibility in infeasible-interior-point methods for optimization, in Founda-
tions of Computational Mathematics, Minneapolis, 2002, F. Cucker, R. DeVore, P. Olver, and
E. Suli, eds., Cambridge University Press, Cambridge, 2004, pp. 157–192.

[287] M. J. TODD AND Y. YE, A centered projective algorithm for linear programming, Mathematics of
Operations Research, 15 (1990), pp. 508–529.

[288] P. L. TOINT, On sparse and symmetric matrix updating subject to a linear equation, Mathematics
of Computation, 31 (1977), pp. 954–961.

[289] , Towards an efficient sparsity exploiting Newton method for minimization, in Sparse
Matrices and Their Uses, Academic Press, New York, 1981, pp. 57–87.

[290] L. TREFETHEN AND D. BAU, Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.

[291] M. ULBRICH, S. ULBRICH, AND L. N. VICENTE, A globally convergence primal-dual interior-point
filter method for nonlinear programming, Mathematical Programming, Series B, 100 (2004),
pp. 379–410.

[292] L. VANDENBERGHE AND S. BOYD, Semidefinite programming, SIAM Review, 38 (1996), pp. 49–95.

[293] R. J. VANDERBEI, Linear Programming: Foundations and Extensions, Springer Verlag, New York,
second ed., 2001.

[294] R. J. VANDERBEI AND D. F. SHANNO, An interior point algorithm for nonconvex nonlinear
programming, Computational Optimization and Applications, 13 (1999), pp. 231–252.

[295] A. VARDI, A trust region algorithm for equality constrained minimization: convergence properties
and implementation, SIAM Journal of Numerical Analysis, 22 (1985), pp. 575–591.

[296] S. A. VAVASIS, Quadratic programming is NP, Information Processing Letters, 36 (1990), pp. 73–
77.

[297] , Nonlinear Optimization, Oxford University Press, New York and Oxford, 1991.

[298] A. WÄCHTER, An interior point algorithm for large-scale nonlinear optimization with applications
in process engineering, PhD thesis, Department of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, PA, USA, 2002.

[299] A. WÄCHTER AND L. T. BIEGLER, Failure of global convergence for a class of interior point methods
for nonlinear programming, Mathematical Programming, 88 (2000), pp. 565–574.

[300] , Line search filter methods for nonlinear programming: Motivation and global convergence,
SIAM Journal on Optimization, 16 (2005), pp. 1–31.

[301] , On the implementation of an interior-point filter line-search algorithm for large-scale
nonlinear programming, Mathematical Programming, 106 (2006), pp. 25–57.

[302] H. WALKER, Implementation of the GMRES method using Householder transformations, SIAM
Journal on Scientific and Statistical Computing, 9 (1989), pp. 815–825.

[303] R. A. WALTZ, J. L. MORALES, J. NOCEDAL, AND D. ORBAN, An interior algorithm for nonlinear
optimization that combines line search and trust region steps, Tech. Rep. 2003-6, Optimization
Technology Center, Northwestern University, Evanston, IL, USA, June 2003.

[304] WATERLOO MAPLE SOFTWARE, INC, Maple V software package, 1994.

652 R E F E R E N C E S

[305] L. T. WATSON, Numerical linear algebra aspects of globally convergent homotopy methods, SIAM
Review, 28 (1986), pp. 529–545.

[306] R. B. WILSON, A simplicial algorithm for concave programming, PhD thesis, Graduate School of
Business Administration, Harvard University, 1963.

[307] D. WINFIELD, Function and functional optimization by interpolation in data tables, PhD thesis,
Harvard University, Cambridge, USA, 1969.

[308] W. L. WINSTON, Operations Research, Wadsworth Publishing Co., third ed., 1997.

[309] P. WOLFE, A duality theorem for nonlinear programming, Quarterly of Applied Mathematics, 19
(1961), pp. 239–244.

[310] , The composite simplex algorithm, SIAM Review, 7 (1965), pp. 42–54.

[311] S. WOLFRAM, The Mathematica Book, Cambridge University Press and Wolfram Media, Inc.,
third ed., 1996.

[312] L. A. WOLSEY, Integer Programming, Wiley–Interscience Series in Discrete Mathematics and
Optimization, John Wiley & Sons, New York, NY, 1998.

[313] M. H. WRIGHT, Interior methods for constrained optimization, in Acta Numerica 1992, Cambridge
University Press, Cambridge, 1992, pp. 341–407.

[314] , Direct search methods: Once scorned, now respectable, in Numerical Analysis 1995 (Pro-
ceedings of the 1995 Dundee Biennial Conference in Numerical Analysis), Addison Wesley
Longman, 1996, pp. 191–208.

[315] S. J. WRIGHT, Applying new optimization algorithms to model predictive control, in Chemical
Process Control-V, J. C. Kantor, ed., CACHE, 1997.

[316] , Primal-Dual Interior-Point Methods, SIAM Publications, Philadelphia, PA, 1997.

[317] , Modified Cholesky factorizations in interior-point algorithms for linear programming,
SIAM Journal on Optimization, 9 (1999), pp. 1159–1191.

[318] S. J. WRIGHT AND J. N. HOLT, An inexact Levenberg-Marquardt method for large sparse nonlinear
least squares problems, Journal of the Australian Mathematical Society, Series B, 26 (1985),
pp. 387–403.

[319] E. A. YILDIRIM AND S. J. WRIGHT, Warm-start strategies in interior-point methods for linear
programming, SIAM Journal on Optimization, 12 (2002), pp. 782–810.

[320] Y. YUAN, On the truncated conjugate-gradient method, Mathematical Programming, Series A, 87
(2000), pp. 561–573.

[321] Y. ZHANG, Solving large-scale linear programs with interior-point methods under the Matlab
environment, Optimization Methods and Software, 10 (1998), pp. 1–31.

[322] C. ZHU, R. H. BYRD, P. LU, AND J. NOCEDAL, Algorithm 778: L-BFGS-B, FORTRAN subroutines
for large scale bound constrained optimization, ACM Transactions on Mathematical Software,
23 (1997), pp. 550–560.

This is page 653
Printer: Opaque this

Index

Accumulation point, see Limit point
Active set, 308, 323, 336, 342
Affine scaling

direction, 395, 398, 414
method, 417

Alternating variables method, see also
Coordinate search method, 104,
230

Angle test, 41
Applications

design optimization, 1
finance, 7
portfolio optimization, 1, 449–450, 492
transportation, 4

Armijo line search, see Line search, Armijo
Augmented Lagrangian function, 423

as merit function, 436
definition, 514

exactness of, 517–518

example, 516

Augmented Lagrangian method, 422, 498,
514–526

convergence, 518–519

framework for, 515

implementation, 519–523

LANCELOT, 175, 519–522

motivation, 514–515

Automatic differentiation, 170, 194

adjoint variables, 208, 209

and graph-coloring algorithms, 212,
216–218

checkpointing, 210

common expressions, 211

computational graph, 205–206, 208,
210, 211, 213, 215

654 I N D E X

Automatic (cont.)
computational requirements, 206–207,

210, 214, 216, 219
forward mode, 206–207, 278
forward sweep, 206, 208, 210, 213–215,

219
foundations in elementary arithmetic,

194, 204
Hessian calculation

forward mode, 213–215
interpolation formulae, 214–215
reverse mode, 215–216

intermediate variables, 205–209, 211,
212, 218

Jacobian calculation, 210–213
forward mode, 212
reverse mode, 212–213

limitations of, 216–217
reverse mode, 207–210
reverse sweep, 208–210, 218
seed vectors, 206, 207, 212, 213, 216
software, 194, 210, 217

Backtracking, 37, 240
Barrier functions, 566, 583
Barrier method, 563–566

primal, 583
Basic variables, 429
Basis matrix, 429–431
BFGS method, 24, 29, 136–143

damping, 537
implementation, 142–143
properties, 141–142, 161
self-correction, 142
skipping, 143, 537

Bound-constrained optimization, 97,
485–490

BQPD, 490
Broyden class, see Quasi-Newton method,

Broyden class
Broyden’s method, 273, 274, 284, 285, 302,

634
derivation of, 279–281
limited-memory variants, 283
rate of convergence, 281–283
statement of algorithm, 281

Byrd–Omojokun method, 547, 579

Calculus of variations, 9

Cancellation error, see Floating-point
arithmetic, cancellation

Cauchy point, 71–73, 76, 77, 93, 100, 170,
172, 262, 486

calculation of, 71–72, 96
for nonlinear equations, 291–292
role in global convergence, 77–79

Cauchy sequence, 618

Cauchy–Schwarz inequality, 75, 99, 151,
600

Central path, 397–399, 417
for nonlinear problems, 565, 584,

594
neighborhoods of, 399–401, 403, 406,

413

Chain rule, 29, 194, 204, 206–208, 213,
625, 627, 629

Cholesky factorization, 87, 141, 143,
161, 251, 259, 289, 292, 454, 599,
608–609, 617

incomplete, 174
modified, 48, 51–54, 63, 64, 76

bounded modified factorization
property, 48

sparse, 412–413
stability of, 53, 617

Classification of algorithms, 422
Combinatorial difficulty, 424

Complementarity condition, 70, 313, 321,
333, 397

strict, 321, 337, 342, 533, 565, 591

Complementarity problems
linear (LCP), 415
nonlinear (NCP), 417

Complexity of algorithms, 388–389, 393,
406, 415, 417

Conditioning, see also Matrix, condition
number, 426, 430–432, 616–617

ill conditioned, 29, 502, 514, 586, 616
well conditioned, 616

Cone, 621

Cone of feasible directions, see Tangent
cone

Conjugacy, 25, 102

Conjugate direction method, 103

I N D E X 655

expanding subspace minimization, 106,
172, 173

termination of, 103
Conjugate gradient method, 71, 101–132,

166, 170–173, 253, 278
n-step quadratic convergence, 133
clustering of eigenvalues, 116
effect of condition number, 117
expanding subspace minimization, 112
Fletcher–Reeves, see Fletcher–Reeves

method
for reduced system, 459–461
global convergence, 40
Hestenes–Stiefel, 123
Krylov subspace, 113
modified for indefiniteness, 169–170
nonlinear, 25, 121–131
numerical performance, 131
optimal polynomial, 113
optimal process, 112
Polak–Ribière, see Polak–Ribière

method
practical version, 111
preconditioned, 118–119, 170, 460
projected, 461–463, 548, 571, 581, 593
rate of convergence, 112
relation to limited-memory, 180
restarts, 124
superlinear convergence, 132
superquadratic, 133
termination, 115, 124

Constrained optimization, 6
nonlinear, 4, 6, 211, 293, 356, 421, 498,

500
Constraint qualifications, 315–320, 333,

338–340, 350
linear independence (LICQ), 320, 321,

323, 339, 341, 358, 464, 503, 517,
533, 557, 565, 591

Mangasarian–Fromovitz (MFCQ),
339–340

Constraints, 2, 307
bounds, 434, 519, 520
equality, 305
inequality, 305

Continuation methods for nonlinear
equations, 274, 303

application to KKT conditions for
nonlinear optimization, 565

convergence of, 300–301
formulation as initial-value ODE,

297–299
motivation, 296–297
predictor–corrector method, 299–300
zero path, 296–301, 303

divergence of, 300–301
tangent, 297–300
turning point, 296, 297, 300

Convergence, rate of, 619–620
n-step quadratic, 133
linear, 262, 619, 620
quadratic, 23, 29, 49, 168, 257, 619, 620
sublinear, 29
superlinear, 23, 29, 73, 132, 140, 142,

160, 161, 168, 262–265, 414, 619,
620

superquadratic, 133
Convex combination, 621
Convex hull, 621
Convex programming, 7, 8, 335
Convexity, 7–8

of functions, 8, 16–17, 28, 250
of sets, 8, 28, 352
strict, 8

Coordinate descent method, see
Alternating variables method, 233

Coordinate relaxation step, 431
Coordinate search method, 135, 230–231
CPLEX, 490
Critical cone, 330

Data-fitting problems, 11–12, 248
Degeneracy, 465

of basis, 366, 369, 372, 382
of linear program, 366

Dennis and Moré characterization, 47
Descent direction, 21, 29, 30
DFP method, 139
Differential equations

ordinary, 299
partial, 216, 302

Direct sum, 603
Directional derivative, 206, 207, 437,

628–629
Discrete optimization, 5–6

656 I N D E X

Dual slack variables, 359
Dual variables, see also Lagrange

multipliers, 359
Duality, 350

in linear programming, 359–362
in nonlinear programming, 343–349
weak, 345, 361

Eigenvalues, 84, 252, 337, 599, 603, 613
negative, 77, 92
of symmetric matrix, 604

Eigenvectors, 84, 252, 603
Element function, 186
Elimination of variables, 424

linear equality constraints, 428–433
nonlinear, 426–428
when inequality constraints are present,

434
Ellipsoid algorithm, 389, 393, 417
Error

absolute, 614
relative, 196, 251, 252, 614, 617
truncation, 216

Errors-in-variables models, 265

Feasibility restoration, 439–440
Feasible sequences, 316–325, 332–333, 336

limiting directions of, 316–325, 329, 333
Feasible set, 3, 305, 306, 338

geometric properties of, 340–341
primal, 358
primal-dual, 397, 399, 405, 414

Filter method, 437–440
Filters, 424, 437–440, 575, 589

for interior-point methods, 575
Finite differencing, 170, 193–204, 216, 268,

278
and graph-coloring algorithms, 202–204
and noise, 221
central-difference formula, 194,

196–197, 202, 217
forward-difference formula, 195, 196,

202, 217
gradient approximation, 195–197
graph-coloring algorithms and, 200–201
Hessian approximation, 201–204
Jacobian approximation, 197–201, 283

First-order feasible descent direction,
310–315

First-order optimality conditions, see
also Karush–Kuhn–Tucker (KKT)
conditions, 90, 275, 307–329, 340,
352

derivation of, 315–329
examples, 308–315, 317–319, 321–322
fundamental principle of, 325–326
unconstrained optimization, 14–15, 513

Fixed-regressor model, 248
Fletcher–Reeves method, 102, 121–131

convergence of, 125
numerical performance, 131

Floating-point arithmetic, 216, 614–615,
617

cancellation, 431, 615
double-precision, 614
roundoff error, 195, 217, 251, 615
unit roundoff, 196, 217, 614

Floating-point numbers, 614
exponent, 614
fractional part, 614

Forcing sequence, see Newton’s method,
inexact, forcing sequence

Function
continuous, 623–624
continuously differentiable, 626, 631
derivatives of, 625–630
differentiable, 626
Lipschitz continuous, 624, 630
locally Lipschitz continuous, 624
one-sided limit, 624
univariate, 625

Functions
smooth, 10, 14, 306–307, 330

Fundamental theorem of algebra, 603

Gauss–Newton method, 254–258, 263,
266, 275

connection to linear least squares, 255
line search in, 254
performance on large-residual

problems, 262
Gaussian elimination, 51, 430, 455, 609

sparse, 430, 433
stability of, 617
with row partial pivoting, 607, 617

I N D E X 657

Global convergence, 77–92, 261, 274
Global minimizer, 12–13, 16, 17, 502, 503
Global optimization, 6–8, 422
Global solution, see also Global minimizer,

6, 69–70, 89–91, 305, 335, 352
GMRES, 278, 459, 492, 571
Goldstein condition, 36, 48
Gradient, 625

generalized, 18
Gradient projection method, 464,

485–490, 492, 521
Group partial separability, see Partially

separable function, group partially
separable

Hessian, 14, 19, 20, 23, 26, 626
average, 138, 140

Homotopy map, 296
Homotopy methods, see Continuation

methods for nonlinear equations

Implicit filtering, 240–242
Implicit function theorem, 324,

630–631
Inexact Newton method, see Newton’s

method, inexact
Infeasibility measure, 437
Inner product, 599
Integer programming, 5, 416

branch-and-bound algorithm, 6
Integral equations, 302
Interior-point methods, see Primal-dual

interior-point methods
nonlinear, see Nonlinear interior-point

method
Interlacing eigenvalue theorem, 613
Interpolation conditions, 223
Invariant subspace, see Partially separable

optimization, invariant subspace
Iterative refinement, 463

Jacobian, 246, 254, 256, 269, 274, 324, 395,
504, 627, 630

Karmarkar’s algorithm, 389, 393, 417
Karush–Kuhn–Tucker (KKT) conditions,

330, 332, 333, 335–337, 339, 350,
354, 503, 517, 520, 528

for general constrained problem, 321
for linear programming, 358–360, 367,

368, 394–415
for linear programming, 394

KNITRO, 490, 525, 583, 592
Krylov subspace, 108

method, 459

L-BFGS algorithm, 177–180, 183
Lagrange multipliers, 310, 330, 333, 337,

339, 341–343, 353, 358, 360, 419,
422

estimates of, 503, 514, 515, 518, 521,
522, 584

Lagrangian function, 90, 310, 313, 320,
329, 330, 336

for linear program, 358, 360
Hessian of, 330, 332, 333, 335, 337, 358

LANCELOT, 520, 525, 592
Lanczos method, 77, 166, 175–176
LAPACK, 607
Least-squares multipliers, 581
Least-squares problems, linear, 250–254

normal equations, 250–251, 255, 259,
412

sensitivity of solutions, 252
solution via QR factorization, 251–252
solution via SVD, 252–253

Least-squares problems, nonlinear, 12, 210
applications of, 246–248
Dennis–Gay–Welsch algorithm,

263–265
Fletcher–Xu algorithm, 263
large-residual problems, 262–265
large-scale problems, 257
scaling of, 260–261
software for, 263, 268
statistical justification of, 249–250
structure, 247, 254

Least-squares problems, total, 265
Level set, 92, 261
Levenberg–Marquardt method, 258–262,

266, 289
as trust-region method, 258–259, 292
for nonlinear equations, 292
implementation via orthogonal

transformations, 259–260
inexact, 268

658 I N D E X

Levenberg–Marquardt (cont.)
local convergence of, 262
performance on large-residual

problems, 262
lim inf, lim sup, 618–619
Limit point, 28, 79, 92, 99, 502, 503, 618,

620
Limited-memory method, 25, 176–185,

190
compact representation, 181–184
for interior-point method, 575, 597
L-BFGS, 176–180, 538
memoryless BFGS method, 180
performance of, 179
relation to CG, 180
scaling, 178
SR1, 183
two-loop recursion, 178

Line search, see also Step length selection
Armijo, 33, 48, 240
backtracking, 37
curvature condition, 33
Goldstein, 36
inexact, 31
Newton’s method with, 22–23
quasi-Newton methods with, 23–25
search directions, 20–25
strong Wolfe conditions, see Wolfe

conditions, strong
sufficient decrease, 33
Wolfe conditions, see Wolfe conditions

Line search method, 19–20, 30–48, 66, 67,
71, 230–231, 247

for nonlinear equations, 271, 285,
287–290

global convergence of, 287–288
poor performance of, 288–289

Linear programming, 4, 6, 7, 9, 293
artificial variables, 362, 378–380
basic feasible points, 362–366
basis B, 362–368, 378
basis matrix, 363
dual problem, 359–362
feasible polytope, 356

vertices of, 365–366
fundamental theorem of, 363–364
infeasible, 356, 357

nonbasic matrix, 367
primal solution set, 356
slack and surplus variables, 356, 357,

362, 379, 380
splitting variables, 357
standard form, 356–357
unbounded, 356, 357, 369
warm start, 410, 416

Linearly constrained Lagrangian methods,
522–523, 527

MINOS, 523, 527
Linearly dependent, 337
Linearly independent, 339, 503, 504, 517,

519, 602
Lipschitz continuity, see also Function,

Lipschitz continuous, 80, 93, 256,
257, 261, 269, 276–278, 287, 294

Local minimizer, 12, 14, 273
isolated, 13, 28
strict, 13, 14, 16, 28, 517
weak, 12

Local solution, see also Local minimizer, 6,
305–306, 316, 325, 329, 332, 340,
342, 352, 513

isolated, 306
strict, 306, 333, 335, 336
strong, 306

Log-barrier function, 417, 597
definition, 583–584
difficulty of minimizing, 584–585
example, 586
ill conditioned Hessian of, 586

Log-barrier method, 498, 584
LOQO, 490, 592
LSQR method, 254, 268, 459, 492, 571
LU factorization, 606–608

Maratos effect, 440–446, 543, 550
example of, 440, 543
remedies, 442

Matlab, 416
Matrix

condition number, 251, 601–602, 604,
610, 616

determinant, 154, 605–606
diagonal, 252, 412, 429, 599
full-rank, 298, 300, 504, 609
identity, 599

I N D E X 659

indefinite, 76
inertia, 55, 454
lower triangular, 599, 606, 607
modification, 574
nonsingular, 325, 337, 601, 612
null space, 298, 324, 337, 430, 432, 603,

608, 609
orthogonal, 251, 252, 337, 432, 599, 604,

609
permutation, 251, 429, 606
positive definite, 15, 16, 23, 28, 68, 76,

337, 599, 603, 609
positive semidefinite, 8, 15, 70, 415, 599
projection, 462
range space, 430, 603
rank-deficient, 253
rank-one, 24
rank-two, 24
singular, 337
sparse, 411, 413, 607

Cholesky factorization, 413
symmetric, 24, 68, 412, 599, 603
symmetric indefinite, 413
symmetric positive definite, 608
trace, 154, 605
transpose, 599
upper triangular, 251, 337, 599, 606,

607, 609

Maximum likelihood estimate, 249

Mean value theorem, 629–630

Merit function, see also Penalty function,
435–437, 446

�1, 293, 435–436, 513, 540–543, 550
choice of parameter, 543

exact, 435–436
definition of, 435
nonsmoothness of, 513

Fletcher’s augmented Lagrangian, 436,
540

for feasible methods, 435
for nonlinear equations, 273, 285–287,

289, 290, 293, 296, 301–303, 505
for SQP, 540–543

Merit functions, 424, 575

Method of multipliers, see Augmented
Lagrangian method

MINOS, see also Linearly constrained
Lagrangian methods, 523, 525, 592

Model-based methods for derivative-free
optimization, 223–229

minimum Frobenius change, 228
Modeling, 2, 9, 11, 247–249
Monomial basis, 227
MOSEK, 490
Multiobjective optimization, 437

Negative curvature direction, 49, 50, 63,
76, 169–172, 175, 489, 491

Neighborhood, 13, 14, 28, 256, 621
Network optimization, 358
Newton’s method, 25, 247, 254, 257, 263

for log-barrier function, 585
for nonlinear equations, 271, 274–277,

281, 283, 285, 287–290, 294, 296,
299, 302

cycling, 285
inexact, 277–279, 288

for quadratic penalty function, 501, 506
global convergence, 40
Hessian-free, 165, 170
in one variable, 84–87, 91, 633
inexact, 165–168, 171, 213

forcing sequence, 166–169, 171, 277
large scale

LANCELOT, 175
line search method, 49
TRON, 175

modified, 48–49
adding a multiple of I, 51
eigenvalue modification, 49–51

Newton–CG, 202
line search, 168–170
preconditioned, 174–175
trust-region, 170–175

Newton–Lanczos, 175–176, 190
rate of convergence, 44, 76, 92, 166–168,

275–277, 281–282, 620
scale invariance, 27

Noise in function evaluation, 221–222
Nondifferentiable optimization, 511
Nonlinear equations, 197, 210, 213, 633

degenerate solution, 274, 275, 283, 302
examples of, 271–272, 288–289,

300–301

660 I N D E X

Nonlinear (cont.)
merit function, see Merit function, for

nonlinear equations
multiple solutions, 273–274
nondegenerate solution, 274
quasi-Newton methods, see Broyden’s

method
relationship to least squares, 271–272,

275, 292–293, 302
relationship to optimization, 271
relationship to primal-dual

interior-point methods, 395
solution, 271
statement of problem, 270–271

Nonlinear interior-point method, 423,
563–593

barrier formulation, 565
feasible version, 576
global convergence, 589
homotopy formulation, 565
superlinear convergence, 591
trust-region approach, 578

Nonlinear least-squares, see Least-squares
problems, nonlinear

Nonlinear programming, see Constrained
optimization, nonlinear

Nonmonotone strategy, 18, 444–446
relaxed steps, 444

Nonnegative orthant, 97
Nonsmooth functions, 6, 17–18, 306, 307,

352
Nonsmooth penalty function, see Penalty

function, nonsmooth
Norm

dual, 601
Euclidean, 25, 51, 251, 280, 302, 600,

601, 605, 610
Frobenius, 50, 138, 140, 601
matrix, 601–602
vector, 600–601

Normal cone, 340–341
Normal distribution, 249
Normal subproblem, 580
Null space, see Matrix, null space
Numerical analysis, 355

Objective function, 2, 10, 304
One-dimensional minimization, 19, 56

OOPS, 490
OOQP, 490
Optimality conditions, see also First-order

optimality conditions, Second-
order optimality conditions, 2, 9,
305

for unconstrained local minimizer,
14–17

Order notation, 631–633
Orthogonal distance regression, 265–267

contrast with least squares, 265–266
structure, 266–267

Orthogonal transformations, 251, 259–260
Givens, 259, 609
Householder, 259, 609

Partially separable function, 25, 186–189,
211

automatic detection, 211
definition, 211

Partially separable optimization, 165
BFGS, 189
compactifying matrix, 188
element variables, 187
quasi-Newton method, 188
SR1, 189

Penalty function, see also Merit function,
498

�1, 507–513
exact, 422–423, 507–513
nonsmooth, 497, 507–513
quadratic, see also Quadratic penalty

method, 422, 498–507, 525–527,
586

difficulty of minimizing, 501–502
Hessian of, 505–506
relationship to augmented

Lagrangian, 514
unbounded, 500

Penalty parameter, 435, 436, 498, 500, 501,
507, 514, 521, 525

update, 511, 512
PENNON, 526
Pivoting, 251, 617
Polak–Ribière method, 122

convergence of, 130
Polak–Ribière method

numerical performance, 131

I N D E X 661

Polynomial bases, 226
monomials, 227

Portfolio optimization, see Applications,
portfolio optimization

Preconditioners, 118–120
banded, 120
constraint, 463
for constrained problems, 462
for primal-dual system, 571
for reduced system, 460
incomplete Cholesky, 120
SSOR, 120

Preprocessing, see Presolving
Presolving, 385–388
Primal interior-point method, 570
Primal-dual interior-point methods, 389,

597
centering parameter, 396, 398, 401, 413
complexity of, 393, 406, 415
contrasts with simplex method, 356,

393
convex quadratic programs, 415
corrector step, 414
duality measure, 395, 398
infeasibility detection, 411
linear algebra issues, 411–413
Mehrotra’s predictor-corrector

algorithm, 393, 407–411
path-following algorithms, 399–414

long-step, 399–406
predictor-corrector (Mizuno–

Todd–Ye) algorithm,
413

short-step, 413
potential function, 414

Tanabe–Todd–Ye, 414
potential-reduction algorithms, 414
predictor step, 413
quadratic programming, 480–485
relationship to Newton’s method, 394,

395
starting point, 410–411

Primal-dual system, 567
Probability density function, 249
Projected conjugate gradient method,

see Conjugate gradient method,
projected

Projected Hessian, 558
two-sided, 559

Proximal point method, 523

QMR method, 459, 492, 571
QPA, 490
QPOPT, 490
QR factorization, 251, 259, 290, 292, 298,

337, 432, 433, 609–610
cost of, 609
relationship to Cholesky factorization,

610
Quadratic penalty method, see also Penalty

function, quadratic, 497, 501–502,
514

convergence of, 502–507
Quadratic programming, 422, 448–492

active-set methods, 467–480
big M method, 473
blocking constraint, 469
convex, 449
cycling, 477
duality, 349, 490
indefinite, 449, 467, 491–492
inertia controlling methods, 491, 492
initial working set, 476
interior-point method, 480–485
nonconvex, see Quadratic programming,

indefinite
null-space method, 457–459
optimal active set, 467
optimality conditions, 464
phase I, 473
Schur-complement method, 455–456
software, 490
strictly convex, 349, 449, 472,

477–478
termination, 477–478
updating factorizations, 478
working set, 468–478

Quasi-Newton approximate Hessian, 23,
24, 73, 242, 634

Quasi-Newton method, 25, 165, 247, 263,
501, 585

BFGS, see BFGS method, 263
bounded deterioration, 161
Broyden class, 149–152
curvature condition, 137

662 I N D E X

Quasi-Newton (cont.)
DFP, see DFP method, 190, 264
for interior-point method, 575
for nonlinear equations, see Broyden’s

method
for partially separable functions, 25
global convergence, 40
large-scale, 165–189
limited memory, see Limited memory

method
rate of convergence, 46, 620
secant equation, 24, 137, 139, 263–264,

280, 634
sparse, see Sparse quasi-Newton method

Range space, see Matrix, range space
Regularization, 574
Residuals, 11, 245, 262–265, 269

preconditioned, 462
vector of, 18, 197, 246

Restoration phase, 439
Robust optimization, 7
Root, see Nonlinear equations, solution
Rootfinding algorithm, see also Newton’s

method, in one variable, 259, 260,
633

for trust-region subproblem, 84–87
Rosenbrock function

extended, 191
Roundoff error, see Floating-point

arithmetic, roundoff error
Row echelon form, 430

S�1QP method, 293, 549
Saddle point, 28, 92
Scale invariance, 27, 138, 141

of Newton’s method, see Newton’s
method, scale invariance

Scaling, 26–27, 95–97, 342–343, 585
example of poor scaling, 26–27
matrix, 96

Schur complement, 456, 611
Secant method, see also Quasi-Newton

method, 280, 633, 634
Second-order correction, 442–444, 550
Second-order optimality conditions,

330–337, 342, 602
for unconstrained optimization, 15–16

necessary, 92, 331
sufficient, 333–336, 517, 557

Semidefinite programming, 415
Sensitivity, 252, 616
Sensitivity analysis, 2, 194, 341–343, 350,

361
Separable function, 186
Separating hyperplane, 327
Sequential linear-quadratic programming

(SLQP), 293, 423, 534
Sequential quadratic programming, 423,

512, 523, 529–560
Byrd–Omojokun method, 547
derivation, 530–533
full quasi-Newton Hessian, 536
identification of optimal active set, 533
IQP vs. EQP, 533
KKT system, 275
least-squares multipliers, 539
line search algorithm, 545
local algorithm, 532
Newton–KKT system, 531
null-space, 538
QP multipliers, 538
rate of convergence, 557–560
reduced-Hessian approximation,

538–540
relaxation constraints, 547
S�1QP method, see S�1QP method
step computation, 545
trust-region method, 546–549
warm start, 545

Set
affine, 622
affine hull of, 622
bounded, 620
closed, 620
closure of, 621
compact, 621
interior of, 621
open, 620
relative interior of, 622, 623

Sherman–Morrison–Woodbury formula,
139, 140, 144, 162, 283, 377,
612–613

Simplex method
as active-set method, 388

I N D E X 663

basis B, 365
complexity of, 388–389
cycling, 381–382

lexicographic strategy, 382
perturbation strategy, 381–382

degenerate steps, 372, 381
description of single iteration, 366–372
discovery of, 355
dual simplex, 366, 382–385
entering index, 368, 370, 372, 375–378
finite termination of, 368–370
initialization, 378–380
leaving index, 368, 370
linear algebra issues, 372–375
Phase I/Phase II, 378–380
pivoting, 368
pricing, 368, 370, 375–376

multiple, 376
partial, 376

reduced costs, 368
revised, 366
steepest-edge rule, 376–378

Simulated annealing, 221
Singular values, 255, 604
Singular-value decomposition (SVD), 252,

269, 303, 603–604
Slack variables, see also Linear

programming, slack/surplus
variables, 424, 519

SNOPT, 536, 592
Software

BQPD, 490
CPLEX, 490
for quadratic programming, 490
IPOPT, 183, 592
KNITRO, 183, 490, 525, 592
L-BFGS-B, 183
LANCELOT, 520, 525, 592
LOQO, 490, 592
MINOS, 523, 525, 592
MOSEK, 490
OOPS, 490
OOQP, 490
PENNON, 526
QPA, 490
QPOPT, 490
SNOPT, 592

TRON, 175
VE09, 490
XPRESS-MP, 490

Sparse quasi-Newton method, 185–186,
190

SR1 method, 24, 144, 161
algorithm, 146
for constrained problems, 538, 540
limited-memory version, 177, 181, 183
properties, 147
safeguarding, 145
skipping, 145, 160

Stability, 616–617
Starting point, 18
Stationary point, 15, 28, 289, 436, 505
Steepest descent direction, 20, 21, 71, 74
Steepest descent method, 21, 25–27, 31,

73, 95, 585
rate of convergence, 42, 44, 620

Step length, 19, 30
unit, 23, 29

Step length selection, see also Line search,
56–62

bracketing phase, 57
cubic interpolation, 59
for Wolfe conditions, 60
initial step length, 59
interpolation in, 57
selection phase, 57

Stochastic optimization, 7
Stochastic simulation, 221
Strict complementarity, see

Complementarity condition, strict
Subgradient, 17
Subspace, 602

basis, 430, 603
orthonormal, 432

dimension, 603
spanning set, 603

Sufficient reduction, 71, 73, 79
Sum of absolute values, 249
Sum of squares, see Least-squares

problems, nonlinear
Symbolic differentiation, 194
Symmetric indefinite factorization, 455,

570, 610–612
Bunch–Kaufman, 612

664 I N D E X

Symmetric (cont.)
Bunch–Parlett, 611
modified, 54–56, 63
sparse, 612

Symmetric rank-one update, see SR1
method

Tangent, 315–325
Tangent cone, 319, 340–341
Taylor series, 15, 22, 28, 29, 67, 274, 309,

330, 332, 334, 502
Taylor’s theorem, 15, 21–23, 80, 123, 138,

167, 193–195, 197, 198, 202, 274,
280, 294, 323, 325, 332, 334, 341,
630

statement of, 14
Tensor methods, 274

derivation, 283–284
Termination criterion, 92
Triangular substitution, 433, 606, 609, 617
Truncated Newton method, see Newton’s

method, Newton-CG, line-search
Trust region

boundary, 69, 75, 95, 171–173
box-shaped, 19, 293
choice of size for, 67, 81
elliptical, 19, 67, 95, 96, 100
radius, 20, 26, 68, 69, 73, 258, 294
spherical, 95, 258

Trust-region method, 19–20, 69, 77, 79,
80, 82, 87, 91, 247, 258, 633

contrast with line search method, 20,
66–67

dogleg method, 71, 73–77, 79, 84, 91,
95, 99, 173, 291–293, 548

double-dogleg method, 99
for derivative-free optimization, 225
for nonlinear equations, 271, 273, 285,

290–296
global convergence of, 292–293
local convergence of, 293–296

global convergence, 71, 73, 76–92, 172

local convergence, 92–95
Newton variant, 26, 68, 92
software, 98
Steihaug’s approach, 77, 170–173,

489
strategy for adjusting radius, 69
subproblem, 19, 25–26, 68, 69, 72, 73,

76, 77, 91, 95–97, 258
approximate solution of, 68, 71
exact solution of, 71, 77, 79, 83–92
hard case, 87–88
nearly exact solution of, 95, 292–293

two-dimensional subspace
minimization, 71, 76–77, 79, 84,
95, 98, 100

Unconstrained optimization, 6, 352, 427,
432, 499, 501

of barrier function, 584
Unit ball, 91
Unit roundoff, see Floating-point

arithmetic, unit roundoff

Variable metric method, see Quasi-Newton
method

Variable storage method, see Limited
memory method

VE09, 490

Watchdog technique, 444–446
Weakly active constraints, 342
Wolfe conditions, 33–36, 48, 78, 131, 137,

138, 140–143, 146, 160, 179, 255,
287, 290

scale invariance of, 36
strong, 34, 35, 122, 125, 126, 128, 131,

138, 142, 162, 179

XPRESS-MP, 490

Zoutendijk condition, 38–41, 128, 156,
287

